

Journal of Artificial Intelligence, Machine Learning and Data Science

<https://urfpublishers.com/journal/artificial-intelligence>

Vol: 4 & Iss: 2

Research Article

Optimizing Enterprise BI Platforms for High-Volume Healthcare Data Warehouses

Jagadeeswar Alampally*

Citation: Jagadeeswar A. Optimizing Enterprise BI Platforms for High-Volume Healthcare Data Warehouses. *J Artif Intell Mach Learn & Data Sci* 2021 4(2), 3270-3273. DOI: doi.org/10.51219/JAIMLD/jagadeeswar-alampally/659

Received: 02 June, 2021; Accepted: 16 June, 2021; Published: 18 June, 2021

*Corresponding author: Jagadeeswar Alampally, Software Development Manager, USA

Copyright: © 2021 Jagadeeswar A., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

The digitalization of healthcare systems has created new volumes of clinical, administrative and operational data and presented serious performance pressures on enterprise Business Intelligence (BI) systems. Although healthcare organizations continue to depend heavily on BI-generated information to enhance clinical quality, operational efficiency and population health management, numerous enterprise BI systems do not scale well when implemented in large healthcare information data warehouses. This study discusses the optimization of enterprises BI systems in the area of healthcare analytics, the dimensional model, Microsoft Business Intelligence (MSBI) software, SQL Server Analysis Services (SSAS), Tableau integration and performance optimization techniques.

This study highlights dimensional modelling as the basis for scalable healthcare BI system development. Star and snowflake schemas are placed in the context of their effect on query performance, OLAP processing efficiency and analytical flexibility of end-users. This study illustrates the extent to which well-designed dimensional models lower query complexity, enhance aggregation performance and facilitate effective multidimensional analysis of large healthcare datasets. Based on this, this study discusses the performance optimization strategies of the BI stack, including indexing, partitioning, aggregation design and optimization of the semantic layer in SSAS.

Keywords: Healthcare data warehouse, Business intelligence, Dimensional modeling, Tableau, MSBI / SSAS, Performance tuning

1. Introduction

The digitization of healthcare systems has led to a rapid increase in the volume, variety and complexity of healthcare data like never before. The universal use of electronic health records (EHRs) has revolutionized the creation, storage and processing of clinical, administrative and operational data. Contemporary healthcare organizations constantly acquire detailed information regarding patient interactions, diagnoses, interventions, medications, laboratory reports, billing and treatment routes. Consequently, healthcare data warehouses have developed into extensive analytical stores that assist in retrospective analysis, reporting and strategic decision-making⁴.

2. Related Work and Background

A. Business intelligence in healthcare systems

In modern healthcare information systems, Business Intelligence (BI) has become increasingly important as businesses aim to use data-based insights to enhance the quality of care, efficiency and overall effectiveness of operations and businesses. The initial BI uptake in the healthcare sector was mainly based on retrospective reporting and regulatory compliance based on stagnant reports generated in transactional systems. Over time, the scope of BI has widened to include analytical dashboards, performance scorecards and interactive reporting environments that help managers and clinicians make decisions⁴.

With the rise in volume and complexity of healthcare data, BI systems have become multidimensional and cross-domain able to support. The process of consolidating clinical, administrative and financial data began gathering data in centralized analytical repositories to allow healthcare organizations to monitor quality indicators, resource utilization and patient outcomes more efficiently. This was a turning point for descriptive reporting to analytical BI systems that have the capacity to aid in monitoring operations and performance management⁷.

B. Gaps in existing literature

The optimization of the semantic layer has not been extensively discussed, including OLAP technologies such as SSAS. Although it has been asserted that semantic models are important in determining query execution and user interface, there is little evidence in the extant literature that evaluates the impact of semantic design decisions on the performance, scalability and maintainability of healthcare BI systems.

3. Architectural Foundations of BI Platforms in Healthcare

Healthcare-based Enterprise Business Intelligence (BI) systems are based on layered architectural platforms that incorporate heterogeneous data sources, centralized analysis

repositories, semantic models and visualization systems. The design and integration of these architectural components significantly impact the effectiveness of BI-based decision support systems. In high-volume healthcare, architectural choices directly influence the scalability, query throughput, maintainability and user experience.

A. Healthcare BI architecture design constraints

The architectures of BI systems in healthcare have several design constraints specific to the domain that affect architectural decisions and performance optimization strategies. Data quality and consistency are core issues because healthcare data may be generated by different systems that may have different standards, coding schemes and completion levels. These problems need to be addressed by ETL and data modelling to provide credible information for analysis¹.

Architectural design is also limited by governance and regulation. Healthcare data are sensitive and patient information and data must meet high privacy and security standards. BI architectures should be able to manage role-based access control, auditing and data lineage tracking to achieve compliance and at the same time allow flexibility in analytics. These control mechanisms have the potential to add to the processing overhead and balancing security and performance in the architecture is required to address this issue.

Table 1: Core Components of an Enterprise Healthcare BI Architecture

Layer	Primary Technologies	Key Responsibilities	Performance Considerations
Data acquisition	SSIS, EHR interfaces	Data extraction, cleansing, transformation	ETL throughput, incremental loading
Data warehousing	SQL Server, dimensional schemas	Centralized analytical storage	Indexing, partitioning, schema design
Semantic layer	SSAS (multidimensional/tabular)	Measures, hierarchies, aggregations	Aggregation design, calculation efficiency
Visualization	Tableau, BI dashboards	Interactive analysis and reporting	Query generation, dashboard responsiveness

4. Dimensional design implications for BI tools

The decisions of dimensional modeling directly and quantifiably affect the business intelligence performance of Tableau and SSAS. The queries generated by BI tools are dynamic in nature according to user interactions, filters and visualization and the effectiveness of these queries is significantly dependent on the underlying data model. Star schemas make query structures less complicated by simplifying the complexity of joins, which allows BI tools to create more optimized SQL and MDX queries.

In the case of SSAS, the dimensional design influences the processing performance of the cube, aggregation design and calculation performance. Well-defined dimensions and hierarchies allow aggregation and caching to be efficient, whereas poorly designed models are susceptible to redundant computations and the processing time can be very high. The semantic layer design is also simplified by dimensional consistency across fact tables, making it simpler to maintain and leading to higher-query predictability.

Overall, dimensional modelling is the key to the relationship between data warehousing and BI. Considerable schema design is not only efficient in queries but also enhances the usability and scalability of the enterprise BI platform that runs on large-volume healthcare data warehouses (**Figure 1**).

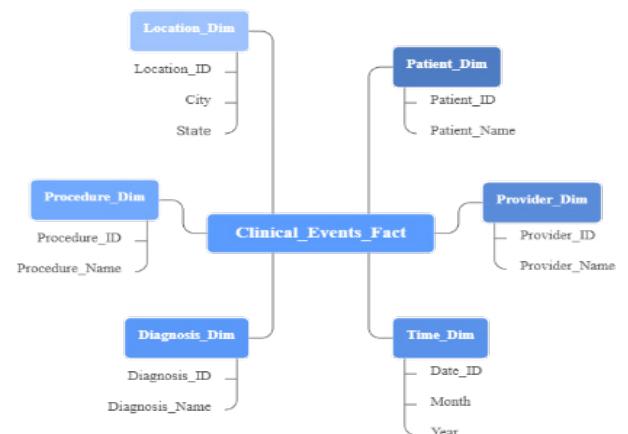


Figure 1: Healthcare Star Schema for Enterprise BI Analytics.

5. Optimisation of MSBI and SSAS for Healthcare Analytics

Business Intelligence (BI) platforms are sustained by large fact tables, complicated dimensional relationships and simultaneous query actions that place enterprise healthcare data warehouses under performance pressure. Performance optimization in a Microsoft-centric BI setup must be holistic in terms of ETL operations, OLAP cube design and the semantic layer. This section analyses the optimization of SQL Server Integration Services (SSIS) and SQL Server Analysis Services (SSAS), which allow scaled responsive analytics on large-scale healthcare data warehouses.

A. Design and query performance of the semantic layer

The semantic layer determines the interaction between end users and healthcare data and is a vital factor in determining query execution and BI performance. The semantic layer in SSAS-based environments reveals measures, hierarchies and calculations that are abstractions of the underlying data model. Inadequate semantic design might cancel the advantages of optimized ETL and cube architecture; thus, performance-sensitive semantic modelling is necessary.

In healthcare analytics, it is common to calculate measures that use rates, ratios and performance indicators. Although such calculations are more expressive in analysis, the calculated measures may be quite complex or poorly scoped, thus increasing the query execution time, especially when measured on large datasets. Performance optimization may also include materializing common computations, often in ETL or cube processing, instead of computing them on demand.

Hierarchies allow effective navigation and aggregation over dimensional levels, either over time organizational structure or clinical classification. SSAS can reuse aggregations and results, thus enhancing the drill-down performance of BI tools because of the well-defined hierarchies. In contrast, flat or inconsistent hierarchies may cause inefficient queries and unpredictability (Figure 2).

Figure 2: SSAS Cube Architecture for Healthcare Analytics.

Table 2: Tableau Performance Anti-Patterns and Optimization Strategies in Healthcare BI.

Performance Issue	Underlying Cause	Optimization Strategy	Healthcare Example
Slow dashboard load	Live queries over large fact tables	Use extracts or SSAS aggregations	Hospital census dashboards
High query latency	High-cardinality filters	Push filters into data model	Patient-level analytics
Poor interactivity	Complex calculated fields	Precompute measures in SSAS	Quality performance metrics
Backend overload	Excessive visual components	Simplify dashboard layouts	Operational dashboards
Inconsistent results	Data blending at visualization layer	Integrate data via ETL	Cross-department reporting

7. Discussion

Similar to big-data-native analytics platforms, including Spark-based systems, optimized enterprise BI platforms have complementary advantages and drawbacks. Enterprise BI systems are suitable for organized analytics, OLAP-type querying and standard reporting concerning dimensional data warehouses. They are especially useful in routine clinical, operational and regulatory analytics because of their mature semantic modelling and visualization capabilities.

6. Tableau Healthcare Dashboard Performance Tuning

Tableau heavily endorses interactive analytics and self-service visualization features, which is why enterprise healthcare dashboards are increasingly constructed using it. Nevertheless, when using Tableau with large-scale healthcare data warehouses, architectural integration and dashboard design are often bottlenecks when performance bottlenecks are not optimized properly. This chapter discusses Tableau performance tuning in healthcare BI systems that are used as query engines, dashboard design patterns and visualization at scale when Tableau is used with SSAS and dimensional data warehouses.

A. Visualization at scale in healthcare

The diversity of users and uses of analytics is a problem created by the visualization of scale in healthcare BI environments. Clinical dashboards are frequently more concerned with real-time or near-real-time data, such as patient flow or quality measures, whereas operational dashboards are more concerned with cumulative data on resource use and financial outcomes. To make the dashboards designable to fulfil both the uses and yet not affect performance, there are critical trade-offs between detail and responsiveness.

Defaulting dashboards to aggregated views is an effective technique for enabling users to obtain detailed information only when needed through a drill-down interaction. This will limit the amount of data that default queries will return and decrease the initial load times of the dashboard. Aggregated first-visualization strategies are used to support the acceptable performance of various users in healthcare settings with high concurrency.

In healthcare analytics, usability and performance are two terms that are closely related to one another. According to previous studies, optimally designed dashboards may enhance clinician satisfaction and quality of care, yet only in the case of performance enabling free interaction¹⁵. Sluggish dashboards or speedy responses minimize user confidence and decrease analysis adoption, despite the accuracy of the data. Therefore, visualization performance should be considered as part of the design requirements and not an add-on feature. Tableau dashboards have the potential to provide a health organization with the option of scaling effectively and facilitating valuable clinical and operational decision-making by balancing visualization design with an optimized backend and the needs of users (Table 2).

In comparison, large data platforms are more flexible and scalable for processing unstructured or semi-structured healthcare data, such as free-text clinical notes, sensor streams or large-scale research datasets. However, these platforms tend to be more technically sophisticated and not as tightly knit in terms of semantic and visualization layers as enterprise BI tools.

Instead of opposing these approaches, the comparison implies a complementary relationship. Structured healthcare data BI platforms that are well-optimized to support high-

performance analytics are still viable, whereas big data native systems serve complicated and exploratory analytics usage cases. This peculiarity coincides with the architectural interest of this study and supplements the Spark-based analytics systems addressed in the literature

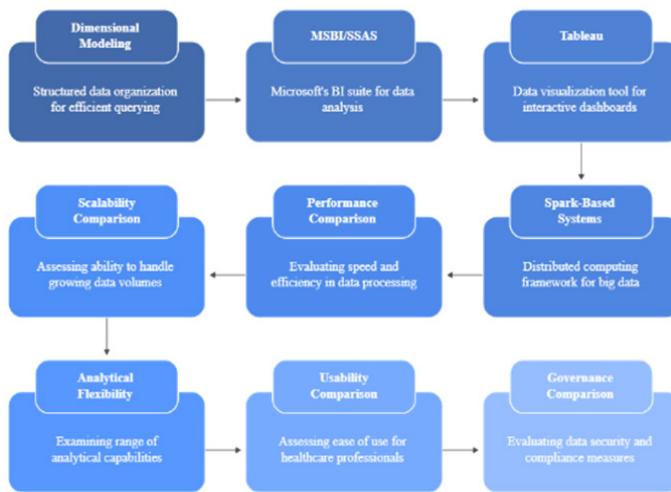


Figure 3: Enterprise BI Platforms Versus Big Data Analytics Trade-Offs in Healthcare.

8. Conclusion

This study discusses the optimization of enterprise Business Intelligence (BI) systems to enable high-volume healthcare data warehousing, with particular emphasis on dimensional modelling, Microsoft Business Intelligence (MSBI) technologies, SQL server analysis services (SSAS), Tableau integration and performance tuning. With the growth in the reliance of medical institutions on BI-led analytics in clinical, operational and strategic decision-making, the ability to guarantee scalable and responsive BI performance has become an urgent necessity rather than an optional improvement.

The main value of this study lies in its architecture- and design-oriented approach to healthcare BI optimization. By focusing on dimension modelling as the cornerstone of analytical performance, this study shows how the design of a star schema, the correct organization of facts and dimensions and a controlled level of data granularity have a direct and positive impact on query performance and dashboard responsiveness. Based on this, this study demonstrated how optimized SSIS-based ETL operations, SSAS cube architecting and semantic layer control can be used together to provide predictable and scalable OLAP performance on huge datasets in the healthcare sector.

9. References

1. Alexander CA, Wang L. Big data and data-driven healthcare systems. Institute of Electrical and Electronics Engineers (IEEE), 2018.
2. Brandão A, Portela F. Steps towards improving the voluntary interruption of pregnancy using business intelligence. Procedia Tech, 2016;16: 135-142.
3. Li J, Zhang Y, Tian Y. Medical big data analysis in hospital information systems. In Big data: Research, development and applications. Springer, 2016: 135-158.
4. Wang Y, Kung L, Byrd TA. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Health Informatics J, 2016;22(2): 237-250.
5. Chrimes D, Moa B, Kuo MH, et al. Operational efficiencies and simulated performance of a big data analytics platform over billions of patient records of a hospital system. Healthcare Informatics Research, 2017;23(3): 229-241.
6. Gastaldi L, Pietrosi A, Lessanibahri S, et al. Measuring the maturity of business intelligence in healthcare: Supporting the development of a roadmap toward precision medicine within ISMETT hospital. International Journal of Medical Informatics, 2017;108: 21-29.
7. Gonçalves AA, Barbosa JGP. The development of an ICT framework for business intelligence at the Brazilian National Cancer Institute: A case study of organizational learning and innovation. International Journal of Information Management, 37: 439-449.
8. Kannan V, Fish J, Mutz J, et al. Rapid development of specialty population registries and quality measures from electronic health record data. JAMIA Open, 2017;1: 1-7.
9. Loreto P, Fonseca F, Lopes Morais AP, et al. (2017). Improving maternity care using business intelligence. Procedia Computer Science, 2017;121: 366-373.
10. Teodoro D, Rotgans N, Oliveira L, et al. Design of an integrated analytics platform for healthcare assessment centered on the episode of care. Studies in Health Technology and Informatics, 2017;235: 416-420.
11. Wells TS, Ozminkowski RJ, Hawkins K, et al. Leveraging big data for population health management. Population Health Management, 2016;19: 272-280.
12. Wang Y, Kung L, Wang WYC, et al. An integrated big data analytics-enabled transformation model: Application to healthcare. International Journal of Information Management, 2017;37: 377-388.
13. Gastaldi L, Pietrosi A, Lessanibahri S, et al. Measuring the maturity of business intelligence in healthcare: Supporting the development of a roadmap toward precision medicine within ISMETT hospital. International Journal of Medical Informatics, 2017;108: 21-29.
14. Hamoud AK, Hashim A, Awadh WA. Clinical data warehouse: A review. Journal of Computer Science, 2018;14: 1739-1750.
15. Khairat S, Dukkipati A, Lauria HA, et al. The impact of visualization dashboards on quality of care and clinician satisfaction: An integrative literature review. Journal of the American Medical Informatics Association, 2018;25: 208-219.