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ABSTRACT

Lung segmentation in chest X-ray (CXR) images is a crucial task in medical image analysis, aiding in accurate disease diagnosis
and treatment planning. This study presents an improved U-Net architecture by integrating a Convolutional Block Attention
Module (CBAM) to enhance segmentation performance. The proposed CBAM unifies three attention mechanisms-Channel
Attention, Spatial Attention and Pixel Attention-to refine feature extraction and improve focus on critical image regions. The
Channel Attention mechanism emphasizes inter-channel dependencies, the Spatial Attention mechanism enhances localization
accuracy by highlighting spatial correlations and the Pixel Attention mechanism refines segmentation precision at the pixel
level. By incorporating CBAM into the U-Net framework, the model achieves superior performance in lung segmentation, as
evaluated using the Dice coefficient and Jaccard similarity index. Experimental results demonstrate that the proposed approach
significantly improves segmentation accuracy, making it a promising advancement in medical image processing for lung disease
assessment.
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quality and data-related issues can hinder accurate interpretation.
To assist doctors with this, computer-aided detection (CAD)
systems are designed to aid in the analysis of medical images’.
These systems analyze digital medical visuals, pinpointing
characteristic patterns and highlighting potentially problematic
regions, like disease indicators, to support diagnostic decisions.

1. Introduction

Analyzing chest X-rays is complex and time-consuming,
often demanding the identification of multiple abnormalities.
Radiologists typically perform this task manually, straining
healthcare resources. The complexity ofthe chestanatomy inthese

images, combined with the subjective nature of interpretation,
can result in inconsistent and potentially biased diagnoses'. This
highlights the need for automated systems to improve efficiency
and accuracy in chest X-ray analysis. Furthermore, image

CAD systems integrate artificial intelligence, computer vision
and medical image processing techniques. In CAD systems,
a crucial step is segmentation, which accurately isolates areas
of concern, such as tumors, from normal tissue. This precise
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separation enhances the reliability of subsequent analyses, like
measuring tumor size or tracking disease progression®.

Essentially, Machine Learning (ML), a type of Artificial
Intelligence (AI), allows computers to learn from data
independently, without requiring explicit instructions.
This capability enables them to automatically improve
their performance through experience, minimizing human
involvement. This learning process is achieved through
algorithms that identify patterns and relationships within
datasets. These algorithms can then be applied to new, unseen
data to make predictions or decisions. ML algorithms excel
at identifying patterns, handling multiple objectives and
generating predictions™®. Deep learning, a subset of ML, has
gained significant traction across diverse areas, including defect
detection® and virtual reality applications™®. The increasing
need to incorporate advanced Al and ML techniques for image
classification and segmentation is fueled by technological
progress’. For example, research is being conducted on how to
understand the inner workings of deep learning applied to error-
correcting codes, examining their design, decoding processes
and benefits compared to conventional methods. This type
of research is crucial for building trust and transparency in
Al-driven medical applications. Study'® demonstrates that deep
learning, when combined with methods that improve image
contrast, can effectively automate the identification of white
matter lesions in MRI scans of multiple sclerosis patients. This
automation has the potential to significantly improve the speed
and accuracy of diagnosis, leading to better patient outcomes.
Research'' has shown that the bladder’s ability to expand easily
when first filling and its efficient emptying (over 90%), is due to
large folds in its dome, not small mucosal rugae as previously
thought.

Deep learning has revolutionized image segmentation by
providing numerous methods that greatly improve accuracy
and speed. A key example is U-Net, a convolutional neural
network designed for biomedical image segmentation. Its
U-shaped design, featuring an encoder and decoder, allows it to
achieve precise segmentations even with limited training data.
This makes U-Net particularly valuable in medical imaging,
where obtaining large, annotated datasets is often challenging.
Furthermore, its ability to capture both local and global
contextual information contributes to its superior segmentation
performance'”. Unet++ enhances medical image segmentation
by using nested, interconnected pathways between the encoder
and decoder components. These improved connections
minimize differences in the information being processed by the
encoder and decoder, making it easier for the learning algorithm
to optimize the segmentation. This results in more accurate
and detailed segmentation outcomes, particularly in complex
medical images'*'. This method improves upon the standard
U-Net by adding residual blocks, which help prevent the
vanishing gradient problem and allow for the creation of more
complex, deeper networks. This work introduced a 3D U-Net
design specifically for identifying and isolating lung tumors in
both CT scans and X-ray images'”.

Attention mechanisms, modeled after how humans visually
focus, have demonstrated significant effectiveness in various
image processing and natural language processing tasks. They
allow models to selectively concentrate on the most relevant parts
of the input data, improving performance and interpretability.
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This method accurately captures the connections between words
or events, even when they are far apart in a sequence. This is
particularly useful in tasks where long-range dependencies
are important, such as summarizing lengthy documents
or understanding complex narratives'®. surveys the role of
positional encoding in transformer-based time series models,
highlighting various encoding methods, their effectiveness
and open challenges in the field. These mechanisms are used
in a wide range of applications, including image classification,
object detection, semantic segmentation, video analysis, image
creation, 3D vision, multi-modal tasks and self-supervised
learning. Their versatility stems from their ability to dynamically
weigh the importance of different input features, allowing
models to adapt to diverse and complex data patterns. Study'’
improves facial recognition precision by intelligently merging
features from several models, utilizing attention mechanisms and
information bottleneck principles'®. This work presents a novel
one-stage pedestrian detection system that integrates channel
and spatial attention mechanisms into CNN architecture'. This
work suggested a U-Net architecture improved by using multiple
encoders for better feature extraction and adding attention
mechanisms within the decoders to accurately focus on important
features?. This method enhances the U-Net architecture by
adding multi-scale spatial attention and dilated convolutions,
allowing it to efficiently gather contextual information.

This study advances lung segmentation in chest X-rays
by fusing U-Net with a combined attention module (CBAM),
boosting accuracy through integrated channel, spatial and pixel
focus.

* Improved U-Net: Integrating CBAM into U-Net allows
the model to grasp broader context and concentrate on key
areas, resulting in richer feature understanding and superior
image segmentation. This enhanced focus translates to more
precise and detailed segmentation results.

*  CBAM with triple attention: Combining channel, spatial
and pixel attention substantially improves the model’s
ability to pinpoint important details in X-ray images.
Channel attention highlights key feature channels, spatial
attention focuses on crucial locations and pixel attention
emphasizes individual pixels, all contributing to more
accurate and precise segmentation. This multi-faceted
attention approach allows the model to learn complex,
hierarchical representations of the image data. By focusing
on the most informative elements, the model minimizes the
impact of irrelevant information and noise, leading to more
robust segmentation results.

Integrating CBAM with U-Net represents a notable
advancement in medical imaging, potentially leading to
more accurate diagnoses and improved patient care. The
effectiveness of this technique is evaluated using metrics like
the Dice coefficient and Jaccard similarity, which are crucial for
measuring segmentation accuracy by comparing predicted and
actual anatomical boundaries, as supported by research?'. These
metrics provide a quantitative measure of how well the model’s
predictions align with ground truth segmentations, ensuring
reliable performance assessment.

This paper is structured as follows: Section II describes the
Chest X-ray dataset and preprocessing steps. Section I1I explains
the proposed method, detailing the integration of CBAM into
U-Net. Section IV presents the simulation results, including
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training and validation details. Finally, Section V concludes the
paper with a summary of the key findings and contributions.

2. Description of the Chest X-ray Lung Segmentation
Dataset

This section details the dataset and preprocessing steps
used to train and evaluate our lung segmentation model. We
utilized a publicly available Chest X-ray dataset from Kaggle,
supplemented with data augmentation techniques to enhance
model robustness and generalization. This comprehensive
approach ensures that our model is trained on a diverse range
of images, improving its applicability to real-world clinical
scenarios.

2.1. Dataset description

To train models for automatic lung identification in
X-rays, researchers utilized a dataset from Kaggle, consisting
of chest X-ray images and their corresponding lung masks?.
This dataset is valuable for medical research, particularly in
automated tuberculosis screening. It contains X-ray images
with segmentation masks, though some masks may be missing,
requiring users to verify mask availability for each image. The
dataset includes 360 normal and 344 abnormal X-ray images,
all labeled by radiologists. (Figure 1) displays sample X-ray
images and their masks from the training and validation sets.

Figure 1: Showing chest X-ray images, alongside the lung
masks created by expert radiologists, used for both training and
validating the model.

(b)

This dataset provides a wide spectrum of lung abnormalities,
including effusions and miliary patterns, making it a valuable
tool for creating algorithms that identify and segment lung
diseases in chest X-rays. Its diverse collection of normal and
abnormal images offers a robust foundation for analysis. This
dataset bridges medical expertise and Al, fostering advancements
in automated diagnostics. The careful data collection and
preparation make it essential for researchers pushing the
boundaries of medical image analysis. Its utilization promotes
the development of more accurate and efficient diagnostic tools,
ultimately improving patient outcomes.

W
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2.2. Image augmentation and preparation

In order to optimize neural network training for lung
segmentation in chest X-rays, the initial dataset was significantly
enlarged through a series of data augmentation techniques.
Key methods included contrast adjustment, Gaussian blurring,
random rotations, horizontal flips and their subsequent
combinations. Contrast enhancement improved feature visibility,
while blurring mitigated noise and prevented overfitting.
Rotations and flips ensured the model’s adaptability to varied
image orientations, addressing potential biases related to patient
positioning and anatomical variations. This comprehensive
augmentation strategy, resulting in a sixfold increase in dataset
size, effectively simulated diverse imaging conditions, thereby
enhancing the network’s robustness and accuracy in real-world
clinical applications. Furthermore, these augmentations helped
the model learn to recognize lung features under challenging
conditions, such as varying lung sizes, shapes and textures,
which are commonly encountered in clinical practice. The
goal was to create a model that could generalize well to unseen
data, ensuring reliable performance across a diverse patient
population. (Figure 2) illustrates the augmented images and
their associated masks, showcasing the effects of the applied
enhancement and augmentation techniques.

Figure 2: Visual representation of augmented images with
their corresponding masks, utilizing the specified augmentation
technique.

3. Methodology

This section begins by outlining the U-Net architecture
as applied to lung segmentation in X-ray images. We then
describe the Convolutional Block Attention Module (CBAM)
and introduce our proposed enhanced U-Net model, which
incorporates CBAM to improve segmentation accuracy.

3.1. U-Net architecture

U-Net, a convolutional neural network, is specifically
designed for biomedical image segmentation. Its “U” shape
comes from its symmetrical encoder-decoder structure. The
encoder compresses the input image into a detailed feature
map, reducing spatial size while increasing feature complexity
via convolution and pooling. The decoder then reconstructs
this map, using transposed convolutions to increase spatial
dimensions for precise localization. Skip connections between
encoder and decoder layers transfer contextual information,
improving segmentation accuracy. This combination of context
and localization makes U-Net highly effective for medical
imaging. (Figure 3) depicts the U-Net architecture for lung
segmentation.
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Figure 3: Schematic representation of the U-Net architecture
as implemented for lung segmentation in chest X-ray images,
showcasing the encoder-decoder structure and skip connections.

3.2. CBAM model

The CBSM is engineered to improve the accuracy of lung
segmentation in chest X-rays using the U-Net architecture,
especially when training data is scarce, unlike standard CNNs.
By integrating channel, spatial and pixel attention, it significantly
enhances the model’s ability to concentrate on relevant features
in X-ray images.

e Channel attention: This focuses on relationships between
feature channels, allowing the model to prioritize the most
informative channels and enhance feature identification.
This is achieved by learning to assign different weights to
each channel, effectively highlighting the most relevant
feature maps.

*  Spatial attention: This directs the model’s focus to critical
spatial locations, improving localization accuracy by
emphasizing spatial feature correlations. By generating
a spatial attention map, the model can selectively attend
to specific regions of the input image, ignoring irrelevant
background information.

*  Pixel attention: This enables the model to concentrate on
individual pixels, refining focus and boosting segmentation
accuracy by prioritizing the most informative pixels.
This fine-grained attention allows for precise boundary
delineation and detailed feature extraction, particularly
important in medical image analysis.

These mechanisms work together to create a richer feature
representation, improving image segmentation performance.
They enable the model to better capture global context and
focus on specific regions. Let’s consider a feature map F with
dimensions HXxWxC, where H is the height, W is the width and
C is the number of channels. The CBSM dynamically adjusts
weights to pinpoint significant regions in complex scenes.
It employs a 1D channel attention map M_CeRA(1x1xC), a
2D spatial attention map M_SERMNHxWx1) and a 2D pixel
attention map M_PeERMNHxWx1). The CBSM refines the input
data sequentially using M_C, M_S and M_P. Therefore, the
entire process of the enhanced CBSM can be represented as:

The channel attention-refined feature map is:

F C=(M_C (F)+1)xF. €))

The spatial attention-refined intermediate feature map is:
F S=(M_S (F_C)+1)xF _C. 2)

The final feature map, refined by pixel attention, is:

F P=(M_P(F S)+1)xF_S, 3)

Where x indicates element-wise multiplication and +
denotes element-wise addition. The attention maps M_C, M_S

4
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and M_P are broadcasted to match the dimensions of the feature
maps they refine. The final output, F_P, represents the feature
map sequentially refined by channel, spatial and pixel attention,
providing a more focused and detailed representation for chest
X-ray lung segmentation. This process enables finer control
over pixel-level attention, potentially enhancing segmentation
accuracy. The CBSM architecture is illustrated in (Figure 4).

m

Pixel Attention

Figure 4: Visualization of the channel, spatial and pixel attention
mechanisms in the CBSM model.

Based on Figure 4, the mathematical expressions for the attention
mechanisms are as follows:

M _C=c(CNN 2 (ReLU(CNN 1 (GP avg (x))))), (1)
M_P=c6(CNN_2 (ReLU(CNN 1 (x)))), 2)
M_S=c(CNN(concat(GP_max (x),GP_avg (x)))), 3)
Here’s a breakdown of the components:

e x: The input feature map to the attention mechanism.

 GP_avg: Global average pooling, which reduces spatial
dimensions while preserving channel information.

*  GP_max: Global max pooling, which also reduces spatial
dimensions while preserving channel information.

e CNN_1 and CNN_2: Convolutional neural network layers
used to learn channel-wise dependencies.

¢ ReLU: The Rectified Linear Unit activation function, which
introduces non-linearity.

e ¢: The Sigmoid activation function, which normalizes the
output to a range between 0 and 1.

Incorporating the CBSM after each down-sampling and
up-sampling stage within the U-Net architecture allows the
network to concentrate on the most critical features at each
processing level. Thisis achieved by refining feature maps through
the CBSM, which selectively amplifies salient information
across channel, spatial and pixel domains. This enhancement is
particularly beneficial when dealing with limited training data,
as it enables the network to maximize information utilization by
highlighting the most informative regions of the input images.
(Figure 5) visually represents the U-Net architecture augmented
with CBSM for lung segmentation in chest X-ray images.

F‘?;H A\
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IIHL“_—EHFH

Ssgrmen

Encodr Decoder

Figure 5: Diagram of the U-Net architecture integrated with the
CBSM for lung segmentation in chest X-ray images, showcasing
the strategic placement of CBSM after each down-sampling and
up-sampling step.
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4. Simulations

This section evaluates the proposed method’s performance
on chest X-ray segmentation. We utilize the Dice similarity
coefficientand Jaccard index for assessment, comparing predicted
segmentation masks with ground truth data. Additionally,
precision, recall and accuracy are used to comprehensively
evaluate segmentation performance.

4.1. Effectiveness of the proposed method using dice
similarity coefficient and jaccard index

Semantic segmentation or pixel-wise classification, is a
crucial technique where each image pixel is assigned to a specific
category. This is essential in fields like medical imaging for
tissue delineation, remote sensing for land cover classification
and autonomous driving for road scene understanding. The goal
is to label each pixel, ensuring pixels with the same label share
attributes. Model performance is evaluated using the Jaccard
index and Dice coefficient, which measure segmentation
accuracy. These metrics rely on true positives (TP), false
positives (FP), false negatives (FN) and true negatives (TN). TP
and TN represent correctly identified tuberculosis and normal
images, respectively, while FP and FN represent incorrectly
identified normal and tuberculosis images. The Jaccard index
or Intersection over Union (IoU), measures the overlap between
predicted and actual labels, calculated as the intersection divided
by the union:

[oU=TP/(TP+FP+FN) (4)

The Dice coefficient or Dice similarity coefficient, measures
the overlap between two samples. It’s calculated as twice the
intersection of the predicted and true labels, divided by the sum
of their sizes. The formula is:

Dice=(2xTP)/(2xTP+FP+FN) (5)

These metrics are particularly useful in semantic segmentation
because they quantify the overlap between predicted and actual
segmentations. The Dice Similarity Coefficient and Jaccard
Index results are shown in (Figures 6 and 7).

0.96

0.94

Dice Similarity Coefficient

0.90

— Umnet
—— U-net with the conventional CBSM
—— U-net with the proposed CBSM

0 20 40 60 80 100
Epoch

Figure 6: Dice similarity coefficient results comparing U-Net,
U-Net with the conventional CBSM?' and U-Net with the
proposed CBSM.

The referenced figures likely illustrate the comparative
performance of three U-Net architectures for chest X-ray image
segmentation, as measured by the Dice similarity coefficient and
Jaccard index. The U-Net without CBSM, acting as the baseline,
lacks attention mechanisms and thus processes all features
uniformly, resulting in the lowest performance. The U-Net with
conventional CBSM integrates channel and spatial attention,
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allowing it to differentially weight channels and concentrate on
pertinent image regions, leading to improved performance over
the baseline. The U-Net with proposed CBSM further enhances
this by incorporating pixel attention, enabling fine-grained focus
on individual pixels, which is crucial for detailed segmentation
tasks and results in the highest Dice similarity coefficient.

0.92

Jaccard Index

0.90

— U-net
— U-net with the conventional CBSM
—— U-net with the proposed CBSM

0 20 40 60 80 100
Epoch

Figure 7: Jaccard Index (IoU) comparison between U-Net,
U-Net with conventional CBSM?! and U-Net with the proposed
CBSM.

4.2. Comparison between the ground truth and segmentation
masks

Visual comparison between automated segmentation masks
and manual annotations is vital for evaluating accuracy, validating
quantitative metrics, identifying algorithmic limitations,
supporting clinical decisions and improving education and
communication in medical imaging. (Figure 8) provides a visual
comparison of chest X-ray segmentation results from various
U-Net architectures.

Al [nfn
dnlnnln
Faln[n]a

Figure 8: Visual comparison of lung segmentation results
across three sample chest X-ray images. (A) Original chest
X-ray image. (B) Manually annotated ground truth lung mask.
(C) Segmentation result from the standard U-Net architecture.
(D) Segmentation result from the U-Net architecture with
conventional CBSM. (E) Segmentation result from the U-Net
architecture with the proposed CBSM.

The sequential transition from panels C to E in Figure 8
effectively demonstrates the improved segmentation accuracy
attained by integrating progressively advanced attention
mechanisms into the U-Net model. In particular, the introduced
CBSM enhances conventional channel and spatial attention
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by incorporating pixel-level refinement, allowing for a more
detailed and precise analysis of chest X-ray images. This results
in the most optimized segmentation performance.

4.3. Segmentation performance evaluation using various
metrics

In this section, we conduct an in-depth evaluation of
additional performance metrics to assess the effectiveness of our
proposed segmentation approach. These metrics are determined
using the following formulas:

*  Accuracy: The ratio of correctly identified cases (including
both true positives and true negatives) to the total number
of cases analyzed.

Accuracy= (TP+TN+FP+FN)/(TP+FN) (6)

e Recall: The ratio of correctly detected positive cases to the
total number of actual positive cases.

Recall = TP/(TP+FN) (7)

*  Specificity: The ratio of correctly detected negative cases to
the total number of actual negative cases.

Specificity= TN/(FP+TN) (8)

e Precision: The ratio of correctly identified positive cases to
the total number of predicted positive cases.

Precision = TP/(TP+FP). (9)

e F1 Score: The Fl-score, which represents the harmonic
mean of precision and sensitivity, balances both metrics,
particularly in scenarios where one may hold greater
significance than the other.

F1-score =2 (Precision xRecall )/(Precision +Recall ) . (10)

The presented metrics collectively provide a comprehensive
evaluation of the deep learning model’s effectiveness in pixel-
level classification for chest X-ray images. (Table 1) outlines
these performance indices.

Table 1: The performance metrics for U-Net, U-Net with the
conventional CBSM and U-Net with the proposed CBSM.

Accuracy | Recall | Specificity | Precision | F1-score

Vethod | e | ) | o
U-net 96.2 9530 |93.54 96.68 95.98
U-net with the
conventional 97.8 95.57 | 95.81 97.14 96.34
CBSM*!
U-net with the
proposed CBSM 98.8 97.50 | 97.64 97.68 97.58

(Table 1) showcases the incremental performance gains
realized through the progressive integration of attention
mechanisms within the U-Net architecture. While the baseline
U-Net demonstrates commendable results, notably a 96.2%
accuracy and 95.98% F1-score, its specificity indicates a potential
for improvement in accurately discerning non-relevant data. The
introduction of the conventional CBSM, incorporating channel
and spatial attention, yields a notable enhancement across all
metrics, culminating in a 96.34% F1-score. Further refinement
is achieved with the proposed CBSM, which likely leverages
pixel-level attention, resulting in a peak accuracy of 98.8%, a
97.58% F1-score and a significantly improved specificity of
97.64%. These results underscore the efficacy of the proposed
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CBSM in delivering a more precise and nuanced analysis of
chest X-ray images, thereby achieving superior segmentation
outcomes.

5. Conclusion

This study presents a novel approach to lung segmentation
in chest X-rays by enhancing the U-Net architecture with an
innovative CBAM. This module effectively combines three
distinct attention mechanisms-channel, spatial and pixel
attention-to refine the model’s structure, leading to significant
improvements in performance. Each attention mechanism
contributes to the overall segmentation accuracy: channel
attention emphasizes important feature channels, spatial
attention focuses on key regions and pixel attention targets the
most relevant pixels, resulting in a more accurate and detailed
segmentation. The improvements in feature representation and
segmentation performance have been thoroughly validated
through rigorous assessments using well-established metrics like
the Dice coefficient and Jaccard similarity index, demonstrating
the method’s superiority over traditional models. Additionally,
a comparative analysis of pixel classification metrics across
different U-Net variations for chest X-ray segmentation shows
a clear, consistent improvement as attention mechanisms are
progressively integrated. In conclusion, the proposed CBAM
combined with the U-Net architecture marks a significant
advancement in medical image analysis, providing a more
accurate and reliable tool for clinical applications.

Future research could enhance the proposed CBAM-
integrated U-Net model by exploring multi-scale attention
mechanisms to capture features at different resolutions,
improving segmentation for varying lung sizes and pathologies.
Expanding the model’s training on diverse chest X-ray datasets
could increase its generalizability across different populations
and imaging conditions. Additionally, incorporating other
advanced attention mechanisms, like dynamic or multi-head
attention, may further refine performance. Integrating temporal
analysis for dynamic imaging could aid in monitoring disease
progression over time, while combining multi-modal imaging
(e.g., CT and MRI) could provide richer diagnostic information.
Optimizing the model for real-time clinical deployment and
improving the interpretability of attention mechanisms would
further support its practical use in clinical settings, helping
radiologists make more informed decisions and ultimately
contributing to better patient outcomes.
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