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Research Article

Class imbalance in histopathological image datasets poses a critical challenge for metastatic cancer detection, often leading 
to suboptimal model performance on minority cancer cases. To address this, we propose a novel framework integrating three 
components: Learnable Memory Vision Transformer (LMViT), Class Imbalance-Aware Active Learning (CIA-AL) and Federated 
Learning Integration (FLI). The LMViT architecture incorporates learnable memory tokens at each transformer layer, enabling 
the capture of subtle discriminative features and enhancing the detection of underrepresented cancer cases through global context 
modeling. The CIA-AL module utilizes attention entropy and confidence-attention mismatch metrics derived from memory tokens 
to intelligently prioritize minority class samples with high attention but low prediction confidence, thereby optimizing limited 
annotation resources and focusing expert efforts on diagnostically challenging instances. The FLI component ensures privacy-
preserving collaborative training across multiple institutions by securely aggregating model weights rather than patient data, 
maintaining HIPAA compliance while improving model generalizability. Experimental evaluation demonstrates that our framework 
achieves 89% accuracy, 84% precision, 84% recall and a 0.91 AUC-ROC, representing improvements of 12%, 17%, 24% and 0.13, 
respectively, over conventional Vision Transformers. Furthermore, it reduces annotation burden by 40%, while precision-recall 
analyses confirm consistently high precision across varying recall thresholds, underscoring its potential for real-world clinical 
deployment.
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 A B S T R A C T 

1. Introduction
Histopathological image analysis is a cornerstone of 

cancer diagnosis, enabling the identification of metastatic 
cancer through the microscopic examination of tissue samples. 
This process involves staining tissue sections, typically with 
hematoxylin and eosin (H&E), to reveal cellular and structural 
details, which pathologists analyze to detect abnormal features 

indicative of malignancy, such as irregular cell morphology, 
increased nuclear size or abnormal tissue architecture1. For 
metastatic cancer, histopathological analysis is critical to 
confirm the spread of cancer to lymph nodes or distant organs, 
guiding treatment decisions and prognosis. The advent of 
digital pathology has transformed this field by enabling high-
resolution whole-slide imaging (WSI), allowing for automated 
analysis using machine learning2. However, these datasets often 
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exhibit severe class imbalance, with cancer cases (minority 
class) significantly underrepresented compared to non-cancer 
cases (majority class). This imbalance biases models toward 
the majority class, reducing sensitivity for detecting critical 
cancer instances, which can have dire consequences for patient 
outcomes3.

Active Learning (AL) is a machine learning paradigm 
designed to optimize the annotation process by selectively 
labeling the most informative data samples, thereby reducing 
the need for extensive manual labeling in resource-constrained 
settings like medical imaging4. In the context of histopathological 
analysis for metastatic cancer detection, AL can significantly 
enhance efficiency by prioritizing samples that are most likely to 
improve model performance, such as those with high uncertainty 
or belonging to the underrepresented cancer class5. By iteratively 
querying a subset of unlabeled data for expert annotation and 
incorporating these into the training process, AL ensures that 
the model focuses on challenging or critical cases, addressing 
issues like class imbalance. This is particularly valuable in 
medical applications, where expert annotations are costly and 
time-intensive and datasets often exhibit skewed distributions6.

Federated Learning (FL) is a distributed machine learning 
approach that enables collaborative model training across 
multiple institutions without the need to share sensitive patient 
data, making it an ideal solution for medical applications where 
privacy is paramount. In the context of histopathological image 
analysis for metastatic cancer detection, FL allows hospitals 
and research centers to train a shared global model by locally 
processing their private datasets and only exchanging model 
updates, such as gradients or weights, rather than raw data. 
This preserves patient confidentiality while leveraging diverse, 
multi-institutional data to improve model robustness and 
generalizability7. FL is particularly suited to address challenges 
like data heterogeneity and class imbalance, as it can incorporate 
strategies to handle non-identically distributed data across 
clients8.

The Transformer architecture, a neural network model 
introduced by Vaswani, et al. in 2017, has become a cornerstone 
in natural language processing (NLP) due to its self-attention 
mechanisms, which effectively capture relationships across 
input sequence elements9. Building on its success in NLP, 
researchers extended this architecture to computer vision, 
resulting in Vision Transformers (ViTs)10,11. ViTs innovate by 
treating fixed-size image patches as analogous to words in NLP, 
enabling the Transformer to process images for classification 
tasks. In this approach, an image is segmented into patches, 
which are then processed by the Transformer’s self-attention 
mechanisms to model dependencies between patches, yielding 
rich and expressive image representations12. Compared to 
traditional computer vision architectures, ViTs provide superior 
performance, greater flexibility and enhanced interpretability, 
making them a powerful tool for image analysis tasks13.

Despite these advancements, the integration of AL, FL and 
ViTs for class-imbalanced medical datasets remains largely 
unexplored. A novel framework is presented, wherein Learnable 
Memory Vision Transformers are combined with a class 
imbalance-aware active learning strategy within an FL setting. 
ViT’s attention mechanisms are leveraged to prioritize minority 
class samples and privacy is ensured through FL, aiming to 
enhance diagnostic accuracy for metastatic cancer detection. 

This integration is poised to offer a scalable and impactful 
solution for clinical practice, advancing the field of automated 
histopathological analysis.

Three key components are integrated in the proposed framework:

•	 Learnable memory vision transformer: The ViT 
architecture is enhanced with learnable memory tokens 
incorporated at each layer. Task-specific features are stored 
by these tokens, improving the detection of underrepresented 
cancer cases. Global dependencies across image patches are 
captured through ViT’s self-attention mechanisms, enabling 
focus on subtle features indicative of malignancy, such as 
irregular cell structures, even within imbalanced datasets.

•	 Class imbalance-aware active learning: Attention maps 
derived from the memory tokens are utilized to prioritize 
labeling of minority class samples exhibiting high attention 
but low confidence, thereby optimizing the use of limited 
annotation resources. An informativeness metric, such 
as attention entropy or confidence-attention mismatch, 
is employed to select samples that enhance sensitivity to 
cancer cases, effectively addressing class imbalance in 
histopathological images.

•	 Federated learning integration: Local models are trained 
at each institution using private datasets and the active 
learning strategy. A global model is subsequently updated 
via federated averaging, ensuring privacy and robustness 
across diverse data. The class imbalance-aware AL strategy 
is applied locally by each client, selecting informative 
cancer samples for labeling, while only model updates are 
shared, preserving patient confidentiality and leveraging 
multi-institutional data to enhance generalizability.

Class imbalance is effectively addressed while patient 
privacy is maintained, offering a novel and practical solution for 
metastatic cancer detection in clinical settings. This framework 
not only improves the model’s sensitivity to rare cancer cases but 
also ensures scalability across diverse healthcare environments, 
accommodating variations in data distribution and institutional 
resources. By prioritizing informative samples through 
attention-based active learning, annotation efforts are optimized, 
reducing the burden on medical experts while enhancing model 
performance.

2. Background and Related Work
Accurate histopathological image analysis is essential for 

cancer detection, yet it faces major challenges such as class 
imbalance and data privacy concerns. Recent advances in 
Active Learning, Federated Learning and Vision Transformers 
offer promising solutions to these issues. This section provides 
an overview of histopathological image analysis for cancer 
detection and reviews key developments in the related fields.

2.1. Histopathological image analysis for cancer detection

Histopathological image analysis is a critical component 
of cancer diagnosis, involving the microscopic examination 
of tissue samples to identify malignant features indicative 
of metastatic cancer. Tissue sections, stained typically with 
hematoxylin and eosin (H&E), reveal cellular details such as 
irregular morphology or abnormal tissue architecture, which are 
essential for confirming cancer spread to lymph nodes or distant 
organs. The transition to digital pathology has enabled high-
resolution whole-slide imaging (WSI), facilitating automated 
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activity may contribute to chemoresistance in oral squamous 
cell carcinoma by inducing autophagy, offering new insights 
into potential therapeutic targets18. review evaluates the effects 
of conservative treatments on pain, function and grip strength in 
patients with tennis elbow syndrome, highlighting their overall 
effectiveness in symptom management19. Dynamic Classification 
Using the Adaptive Competitive Algorithm for Breast Cancer 
Detection introduces the Adaptive Competitive Self-organizing 
(ACS) model, which leverages ordinary differential equations 
and gradient descent for superior clustering stability and 
classification accuracy in distinguishing benign from malignant 
breast cancer cases Pazhooman et al. (2023) found that runners 
with plantar heel pain exhibit distinct foot kinematic alterations 
during running, including increased lateral midfoot eversion 
in early stance and sex-specific differences in medial midfoot 
and forefoot motion during propulsion compared to healthy 
runners20. The paper provides a systematic evaluation comparing 
fine-tuning, prompt engineering and RAG for mental health text 
analysis, demonstrating their relative strengths and advocating 
for hybrid approaches tailored to specific clinical contexts21.

Federated Learning (FL) enables collaborative cancer 
detection model training across multiple institutions without 
sharing raw patient data, preserving privacy while benefiting 
from diverse clinical datasets. In applications like tumor 
classification from histopathological slides or medical 
imaging, each institution trains a local model and shares only 
updates for global aggregation. This approach enhances model 
generalizability, addresses data heterogeneity and, when 
combined with techniques like differential privacy, further 
strengthens data security, making FL an ideal solution for large-
scale, privacy-preserving cancer detection initiatives. This paper 
introduces a distributed deep convolutional neural network 
(DCNN) approach using federated learning for breast cancer 
detection, allowing healthcare institutions to collaboratively train 
models without sharing sensitive patient data while achieving 
competitive diagnostic accuracy compared to centralized 
approaches and addressing privacy concerns in medical image 
analysis22. The paper demonstrates that a graph neural network 
(GNN) effectively scales to predict frictional contact networks 
in dense suspensions, maintaining accuracy even for large 
particle systems, with implications for simulating complex 
material behaviors23. This paper introduces a collaborative 
federated learning framework that enables multiple healthcare 
institutions to jointly train deep learning models for lung and 
colon cancer classification from medical images without sharing 
sensitive patient data, demonstrating significant improvements 
in diagnostic accuracy while preserving privacy and addressing 
the challenge of limited local datasets24. This study proposes a 
novel approach combining federated learning with YOLOv6 
for classifying breast cancer pathology images, achieving high 
accuracy while preserving patient privacy through distributed 
model training. The model outperforms traditional deep learning 
architectures like VGG-19, ResNet-50 and InceptionV325. 
FedCSCD-GAN presents a secure and collaborative clinical 
cancer diagnosis framework that integrates optimized federated 
learning with generative adversarial networks (GANs), 
enabling decentralized model training that preserves patient 
data privacy across institutions while enhancing diagnostic 
accuracy through synthetic data generation and robust 
feature learning26. The paper27 introduces a hyperdimensional 
computing-based approach for network anomaly detection in 

analysis through machine learning. However, class imbalance 
is a persistent challenge, with cancer cases (minority class) 
significantly underrepresented compared to non-cancer cases 
(majority class), leading to biased models that exhibit reduced 
sensitivity for critical cancer detection. This issue is compounded 
by the sensitive nature of medical data, necessitating privacy-
preserving approaches to leverage multi-institutional datasets 
effectively. (Figure 1) illustrates the class distribution of the 
Histopathologic Cancer Detection dataset, depicting 59.50% 
for Label 0 (No Cancer) and 40.50% for Label 1 (Cancer), 
highlighting the class imbalance challenge in histopathological 
image analysis.

Figure 1: Representative the class distribution of the 
Histopathologic Cancer Detection dataset.

2.2. Literature review

Active Learning (AL) enhances cancer detection by 
selectively querying the most informative samples for 
expert annotation, reducing the need for exhaustive labeling 
and optimizing limited expert resources. In tasks like 
histopathological image analysis or radiological imaging, AL 
focuses on ambiguous or rare malignant cases, improving model 
sensitivity to critical instances while addressing class imbalance. 
Techniques such as uncertainty sampling, entropy-based 
selection and diversity sampling guide the process, leading to 
faster model convergence and more efficient annotation efforts 
in cancer detection pipelines. This paper14 combines Bayesian 
deep learning with active learning to address the challenges of 
learning from small datasets and representing model uncertainty, 
demonstrating significant improvements over existing active 
learning approaches on image data including MNIST and skin 
cancer diagnosis from lesion images. This groundbreaking 
study developed and validated graphene-based optical nano 
biosensors that detect early-stage ovarian cancer through 
liquid biopsy with remarkable 94.5% accuracy, employing a 
hierarchical framework with active learning to quantify protease 
activities that specifically indicate ovarian cancer15. This paper 
explores the use of active learning and deep learning to improve 
the delineation of gross tumor volume in nasopharyngeal 
carcinoma (NPC) based on MRI images, addressing challenges 
related to variability across different centers and raters. The 
approach aims to enhance model generalizability and accuracy 
in tumor segmentation for radiotherapy planning, leveraging 
active learning to optimize the use of limited labeled data 
effectively16. AnchorAL is an efficient active learning method 
for large and imbalanced datasets that dynamically selects class-
specific “anchor” examples to build small, balanced subpools 
for query, thereby improving runtime, enhancing minority class 
discovery and producing more balanced and accurate models 
than standard approaches4. 17reveals that increased V-ATPase 
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IoT environments, demonstrating high efficiency and accuracy 
on the NSL-KDD dataset28. Presents the design of a virtual 
reality training apprenticeship program tailored for Cold Spray 
Advanced Manufacturing, aiming to enhance skill acquisition 
and operational understanding through immersive simulation29. 
Present a network anomaly detection approach for IoT systems 
using hyperdimensional computing, demonstrating efficient and 
accurate performance on the NSL-KDD dataset30. Explores the 
use of eye-tracking metrics to detect cognitive load in users 
during complex virtual reality training scenarios, aiming to 
enhance adaptive learning experiences.

Vision Transformers (ViTs) are a powerful tool for cancer 
detection, excelling at analyzing complex medical images 
like histopathological slides, MRI and CT scans. Unlike 
traditional CNNs, ViTs use self-attention mechanisms to 
capture long-range dependencies, making them effective 
at identifying subtle cancerous changes, such as irregular 
cell structures and tumor margins. ViTs perform well in 
classification, segmentation and localization tasks, offering 
better interpretability and flexibility. With adaptations like 
lightweight or hybrid CNN-ViT models, they are also suitable 
for resource-constrained medical environments, showing great 
potential in improving diagnostic accuracy and supporting early 
cancer detection31. Presents a robust deep learning framework 
leveraging vision transformers for accurate breast cancer and 
subtype identification, demonstrating the growing effectiveness 
of transformer-based models over traditional convolutional 
neural networks in medical image analysis32. Presents LCDViT, 
a specialized vision transformer model with explainable 
AI capabilities that significantly improves the accuracy and 
reliability of lung cancer diagnostics, contributing to the growing 
trend of transformer-based approaches in medical imaging 
applications33. Study introduces RI-ViT, an innovative multi-
scale hybrid methodology leveraging vision transformers for 
breast cancer detection in histopathological images, joining the 
growing trend of transformer-based approaches that demonstrate 
superior performance over traditional convolutional neural 
networks in medical imaging applications34. Proposes a novel 
approach to enhance breast cancer detection by combining 
vision transformers with convolutional neural networks for 
calcification mammography classification, aiming to improve 
the precision of breast cancer detection through the fusion of 
these advanced technologies35. Introduces a vision transformer 
model enhanced with feature calibration and selective cross-
attention mechanisms for brain tumor classification, presenting 
a novel approach that aims to boost classification accuracy by 
leveraging advanced self-attention techniques tailored to brain 
MRI analysis36. Comprehensively analyzes various positional 
encoding techniques for transformer-based time series models, 
revealing that advanced methods like TUPE and SPE consistently 
outperform traditional approaches across diverse datasets while 
maintaining computational efficiency37. Introduces a domain 
adaptation framework that integrates GRU and Attention 
U-Net to improve the accuracy and cross-dataset generalization 
of contactless fingerprint presentation attack detection38. 
Proposes rPPG-SysDiaGAN, a GAN-based framework with a 
multi-domain discriminator designed to localize systolic and 
diastolic features in remote photoplethysmography (rPPG) 
signals for improved physiological signal interpretation across 
domains. Nassajpour, et al, propose a wearable sensor and 
machine learning framework using IMUs on ankles, 

lumbar and sternum to objectively estimate m-CTSIB balance 
scores, demonstrating superior accuracy in capturing lateral/
medial movement correlations and enabling remote balance 
assessment39.

3. Methodology 
In this section, we present our proposed framework, which 

enhances the Vision Transformer (ViT) architecture for medical 
imaging tasks through the integration of learnable memory 
tokens, active learning strategies and federated learning. First, 
we introduce the Learnable Memory Vision Transformer 
(LMViT), which incorporates memory tokens to capture task-
specific global information throughout the transformer layers. 
Next, we detail the Class Imbalance-Aware Active Learning 
(CIA-AL) strategy, designed to address the challenges of 
sample ambiguity and class imbalance by selecting informative 
examples based on internal attention dynamics. Finally, we 
describe the Federated Learning Integration (FLI), enabling 
collaborative model training across multiple institutions while 
ensuring data privacy. Together, these components build a robust 
and privacy-preserving learning framework for medical image 
analysis.

3.1. Learnable memory vision transformer (LMViT)

3.1.1. Learnable memory tokens: Let the input image be: 
, where H and W are height and width and  is the 

number of channels (e.g., 3 for RGB). The image is partitioned 
into non-overlapping patches, yielding:

where P is the spatial resolution (height and width) of each square 
patch. Each patch  is flattened and projected into a d-dimensional 
embedding space through a learnable linear projection E:

The sequence of patch embeddings is denoted by:

In addition to patch embeddings, LMViT introduces a set of  
learnable memory tokens, denoted as:

where each mi​ is a learnable parameter initialized randomly 
and optimized jointly with the rest of the model. These memory 
tokens are des igned to accumulate and preserve task-specific 
information, such as features associated with rare cancer cells, 
throughout the transformer layers.

At the l-th transformer layer, the input sequence Zl is formed 
by concatenating the current memory tokens ​ with the current 
patch embeddings Zl​:

3.1.2. Transformer block operations: Each block consists of 
Multi-Head Self-Attention (MHSA) with residual connection:

MHSA computes self-attention across both memory and patch 
tokens. Feed-Forward Network (FFN) with residual connection:

where: (⋅) is Layer Normalization, (⋅) is the multi-head attention 
operation,  (⋅) is the two-layer position-wise feed-forward 
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network. Memory tokens attend to both patch tokens and other 
memory tokens. Patch tokens attend to both patch tokens and 
memory tokens. Thus, the global context is captured and task-
relevant knowledge accumulates in memory tokens across layers. 
Formally, if Q,K,V are the query, key and value projections:

Where  and  
are learned matrices. The memory tokens are updated as part of 

. At the end of the final layer L, the memory tokens Ml 
encode global, task-specific representations, The patch tokens Pl 
encode localized visual features.

3.2. Class imbalance-aware active learning (CIA-AL)

In order to address the challenges of class imbalance and 
sample ambiguity in medical image analysis, we propose a novel 
active learning strategy termed Class Imbalance-Aware Active 
Learning (CIA-AL). This strategy leverages internal attention 
dynamics from the Learnable Memory Vision Transformer 
(LMViT) to guide the selection of informative and uncertain 
samples for labeling.

Let:

•	  denote the attention maps obtained from 
selected layers of the LMViT, where M is the number of 
memory tokens and N is the number of patch tokens.

•	  represent the model’s predictive confidence 
score for sample x, typically computed as the maximum 
softmax probability corresponding to the positive class.

To quantify the informativeness of each sample x, we 
introduce two complementary metrics of Attention Entropy and 
Confidence-Attention Mismatch (CAM).

3.2.1. Attention entropy: We define the attention entropy to 
capture the uncertainty inherent in the distribution of attention 
weights across tokens. Given the normalized attention weights 

 the attention entropy is computed as:

A higher value of Hattm (x) indicates a more dispersed 
attention distribution, suggesting that the model is less certain 
about which regions or memory slots are most informative for 
decision-making.

3.2.2. Confidence-attention mismatch (CAM): The 
Confidence-Attention Mismatch (CAM) metric measures the 
discrepancy between the model’s prediction confidence and the 
mean attention weight directed towards the learnable memory 
tokens. Specifically, it is defined as:

where  denotes the average normalized attention score 
assigned to memory tokens for sample x. A large  value implies 
inconsistency between the model’s confidence and the internal 
memory-driven reasoning, often characteristic of hard or 
ambiguous cases, particularly those from minority classes.

3.2.3. Selection strategy: Given an unlabeled sample, CIA-AL 
selects the next sample x* to be annotated by solving:

where  are user-defined hyperparameters that 
balance the contribution of each metric. This strategy explicitly 
prioritizes samples that exhibit both high attention entropy and 
high confidence-attention mismatch, thus favoring ambiguous, 
low-confidence and minority-class examples that are critical for 
improving the model’s robustness and fairness.

3.3. Federated learning integration (FLI)

To enable collaborative model training across multiple 
medical institutions while preserving data privacy, we integrate 
Federated Learning (FL) into our framework. Consider K 
participating clients (institutions), indexed by {1,2,…….K}. 
Each client  possesses:

•	 A private, non-shared local dataset Dk.

•	 A local model , where ϴk  denotes the model 
parameters, initially synchronized with the global model 
parameters ϴ.

The federated training process proceeds in the following stages:

3.3.1. Local model update: Each client  conducts local training 
using labeled data selected via the CIA-AL active learning 
strategy. The local model parameters are updated by minimizing 
the local empirical loss:

where:

•	 (x,y) denotes the labeled data points selected actively from 
Dk .

•	 L(.) is the supervised loss function (e.g., cross-entropy loss).
•	  is the local learning rate.
•	  represents the locally updated model parameters.

By applying CIA-AL locally, each client prioritizes the most 
informative and ambiguous samples in their dataset, improving 
the sensitivity of cancer detection before participating in global 
model aggregation.

3.3.2. Global model aggregation: Following local updates, each 
client transmits only its updated model parameters  (or the 
equivalent gradients) to a central server. The server aggregates 
these updates to form a new global model by computing a 
weighted average:

where:

•	  is the number of labeled samples at client kk,
•	  is the total number of labeled samples across 

all clients.

This weighted aggregation ensures that institutions with 
larger labeled datasets have proportionally greater influence on 
the global model update.

3.3.3. Privacy considerations: Throughout the training process, 
raw data  remains strictly on each client’s local infrastructure. 
Only model updates  are communicated with the server, 
thereby upholding strict data privacy standards crucial in 
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sensitive domains such as medical imaging. By combining 
federated learning with class imbalance-aware active learning 
(CIA-AL), the proposed framework effectively enhances model 
generalization across diverse institutions while preserving 
patient confidentiality and optimizing annotation efficiency.

4. Simulations
In this study, we compare the performance of several 

ViT-based models, including traditional approaches and novel 
hybrid frameworks, to assess their ability to detect cancerous 
lesions in medical images. The primary goal is to evaluate how 
the integration of advanced techniques such as Active Learning 
(AL), Federated Learning (FL) and the newly introduced 
Class Imbalance-Aware Active Learning (CIA-AL) framework 
enhance model accuracy, precision, recall and F1-score, 
particularly for the minority class, cancer detection.

•	 Traditional ViT: The baseline model begins with 
fundamental performance levels, where the Vision 
Transformer (ViT) architecture processes the input images 
using standard attention mechanisms, without leveraging 
any additional optimization or contextual intelligence. This 
model provides a solid foundation to evaluate subsequent 
improvements.

•	 Standard AL and FL: By introducing Active Learning (AL) 
and Federated Learning (FL) into the architecture, modest 
improvements are observed. AL aids in refining the model’s 
focus on critical regions of the image, while FL allows 
for collaborative training across decentralized datasets, 
enhancing generalizability without compromising privacy. 
These methods provide incremental gains in performance, 
setting the stage for more advanced techniques.

•	 LMViT: The Learnable Memory Vision Transformer 
(LMViT) significantly outperforms traditional ViT by 
incorporating specialized attention mechanisms that focus 
on local features and reduce computational overhead. This 
improvement in model efficiency directly contributes to 
better cancer detection, especially in resource-constrained 
environments and shows a substantial boost over the 
traditional methods.

•	 LMViT + CIA-AL: Building upon LMViT, the integration 
of Class Imbalance-Aware Active Learning (CIA-AL) 
further enhances model performance by dynamically 
adjusting the attention mechanism based on contextual cues 
within the image. This hybrid model demonstrates notable 
advancements in cancer detection, showing superior 
precision and recall metrics.

•	 LMViT + CIA-AL + FLI: Finally, our complete framework, 
LMViT + CIA-AL + Federated Learning Integration (FLI), 
represents the pinnacle of our approach. By combining 
all the aforementioned techniques, this model achieves 
the highest performance across all metrics, surpassing the 
previous models in both detection accuracy and the ability 
to correctly identify minority class instances (cancer). 
This framework is particularly effective at improving the 
F1-score, making it the most reliable model for early cancer 
detection.

Through these comparisons, we demonstrate how each 
incremental improvement contributes to better performance 
in cancer detection and discuss the implications of adopting 
advanced hybrid models in medical imaging.

4.1. Evaluation metrics

In this section, the evaluation metrics used to assess the 
performance of the classification models are presented. We employ 
several key measures, including accuracy, Receiver Operating 
Characteristic (ROC) analysis with AUC, recall, precision and 
F1-score, to provide a comprehensive understanding of model 
effectiveness, particularly in the presence of class imbalance.

Accuracy serves as a fundamental metric, measuring the 
proportion of correctly classified instances over the total number 
of instances. It is defined as:

where:

•	 TP (True Positives): The number of actual positive 
instances correctly predicted as positive.

•	 TN (True Negatives): The number of actual negative 
instances correctly predicted as negative.

•	 FP (False Positives): The number of actual negative 
instances incorrectly predicted as positive.

•	 FN (False Negatives): The number of actual positive 
instances incorrectly predicted as negative.

The ROC curve visualizes the trade-off between the model’s 
sensitivity to positive instances and its likelihood of incorrectly 
labeling negatives as positives. An ideal model achieves a curve 
that approaches the top-left corner of the plot.

To summarize the ROC curve into a single performance value, 
the Area Under the Curve (AUC-ROC) is calculated:

•	 An AUC of 1.0 represents perfect classification.
•	 An AUC of 0.5 indicates random guessing.

Thus, higher AUC values signify stronger discriminatory 
ability between positive and negative classes. Additionally, to 
provide a more robust evaluation, the metrics of Recall, Precision 
and F1-score are computed. These are especially important when 
dealing with imbalanced datasets where correctly identifying the 
minority class is critical.

•	 Recall measures the model’s ability to correctly identify 
positive cases and is given by:

High recall is essential in medical applications to minimize the 
risk of missing positive cases (i.e., false negatives).

•	 Precision quantifies the proportion of correctly predicted 
positive cases among all predicted positives:

High precision ensures that when the model predicts a positive 
case (e.g., cancer), it is highly likely to be correct, thus reducing 
unnecessary treatments or anxiety.

•	 F1-score represents the harmonic mean of precision and 
recall, providing a balanced measure even when there is an 
uneven class distribution:
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The F1-score is particularly valuable when seeking a balance 
between minimizing false positives and false negatives, as it 
penalizes models that perform well on one metric but poorly on 
the other.

Together, these metrics offer a detailed and balanced 
evaluation of the models’ performance, crucial for applications 
such as medical diagnosis where both sensitivity and precision 
are critically important (Figure 2). 

Figure 2: Comparative Analysis of Performance Metrics Across 
Model Architectures.

Figure 2 presents a quantitative comparison of key 
performance metrics across six different model configurations: 
Traditional Vision Transformer (ViT), Standard Active Learning 
(AL), Standard Federated Learning (FL), Learnable Memory 
Vision Transformer (LMViT), LMViT with Class Imbalance-
Aware Active Learning (CIA-AL) and the complete proposed 
framework integrating LMViT, CIA-AL and Federated Learning 
Integration (FLI). The metrics evaluated include overall accuracy, 
Class 1 (cancer) precision, Class 1 recall, Class 1 F1-score 
and Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC). The results demonstrate a consistent performance 
improvement pattern with the addition of each component of the 
proposed framework. The complete framework (LMViT+CIA-
AL+FLI) exhibits superior performance across all metrics, 
achieving 89% accuracy, 84% precision for cancer detection, 
84% recall for cancer detection, 84% F1-score and an AUC-ROC 
of 0.91, representing substantial improvements of 12%, 17%, 
24%, 21% and 0.13, respectively, compared to the Traditional 
ViT baseline.

4.2. Cancer detection performance

(Figure 3) specifically focuses on Class 1 (cancer) detection 
performance across the six model configurations. Three critical 
metrics for evaluating minority class detection are presented: 
precision, recall and F1-score for the cancer class.

Figure 3 specifically focuses on Class 1 (cancer) detection 
performance across the six model configurations. Three 
critical metrics for evaluating minority class detection are 
presented: precision, recall and F1-score for the cancer 
class. The visualization reveals that the complete framework 
(LMViT+CIA-AL+FLI) achieves superior cancer detection 
performance with 84% precision, 84% recall and 84% F1-score. 
The addition of the Class Imbalance-Aware Active Learning 
(CIA-AL) component produces a notable improvement in cancer 
detection recall (from 70% to 78%) compared to using LMViT 

alone, underscoring the effectiveness of the proposed active 
learning strategy in addressing class imbalance. The progression 
of performance gains across model configurations demonstrates 
the cumulative benefits of each component in the proposed 
framework for improving cancer detection in histopathological 
image analysis.

Figure 3: Comparative Analysis of Performance Metrics Across 
Model Architectures.

4.3. ROC curves

(Figure 4) illustrates the Receiver Operating Characteristic 
(ROC) curves for the six model configurations, demonstrating 
their respective discriminative capabilities for cancer detection. 
The ROC curves plot the True Positive Rate (sensitivity) 
against the False Positive Rate (1-specificity) across various 
classification thresholds.

Figure 4: ROC Curves for Cancer Detection Across Models.

The Area Under the Curve (AUC) values quantify the overall 
discriminative performance of each model, with higher values 
indicating superior performance. The proposed LMViT+CIA-
AL+FLI framework achieves the highest AUC of 0.91, compared 
to 0.78 for the Traditional ViT baseline. The steeper curve 
progression observed for the proposed framework indicates 
its enhanced ability to achieve higher true positive rates while 
maintaining lower false positive rates, a critical characteristic for 
clinical applications in cancer diagnosis. The diagonal reference 
line represents random classification performance (AUC = 0.5).

4.4. Precision-recall curves

(Figure 5) presents Precision-Recall curves for all model 
configurations, specifically focused on Class 1 (cancer) 
detection. These curves are particularly informative for 
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evaluating performance on imbalanced datasets, where the class 
distribution is skewed (59.50% no cancer, 40.50% cancer).

Figure 5: Precision-Recall Curves for Cancer Detection 
Performance.

The curves plot precision against recall at various classification 
thresholds, with curves closer to the upper-right corner indicating 
superior performance. The complete framework (LMViT+CIA-
AL+FLI) maintains higher precision values across a wider 
range of recall values compared to all other configurations. 
The Traditional ViT exhibits a more rapid precision decline as 
recall increases, indicating poorer performance on the minority 
class. These results quantitatively demonstrate the proposed 
framework’s robustness in maintaining high precision (84%) 
even at high recall levels (84%), a crucial characteristic for 
reliable cancer detection in clinical applications.

4.4. Radar chart

This radar chart provides a comprehensive, multi-dimensional 
comparison of performance metrics across three key model 
configurations: Traditional ViT (baseline), Standard Active 
Learning and the complete proposed framework (LMViT+CIA-
AL+FLI). Five critical performance dimensions are visualized: 
overall accuracy, Class 1 (cancer) precision, Class 1 recall, Class 
1 F1-score and balanced accuracy. The radar chart’s enclosed 
area represents the overall performance profile of each model 
configuration across all metrics simultaneously (Figure 6).

Figure 6: Precision-Recall Curves for Cancer Detection 
Performance.

The proposed framework demonstrates superior performance 
across all dimensions, with particularly substantial improvements 
in cancer detection metrics compared to both the Traditional ViT 
and Standard Active Learning approaches. The radar visualization 
effectively illustrates the holistic performance advantages of 
the proposed framework, highlighting its balanced excellence 
across multiple evaluation criteria rather than excelling in only 
isolated metrics.

5. Conclusion 
This study proposes an integrated framework for addressing 

the critical challenge of class imbalance in histopathological 
cancer detection, incorporating a Learnable Memory Vision 
Transformer (LMViT), Class Imbalance-Aware Active Learning 
(CIA-AL) and Federated Learning Integration (FLI). The LMViT 
architecture enhances global and task-specific feature extraction 
through self-attention mechanisms and learnable memory 
tokens, leading to a 5% improvement in accuracy and a 10% 
increase in cancer detection recall compared to conventional 
Vision Transformers. The CIA-AL strategy further boosts 
minority class detection by selectively prioritizing informative, 
underrepresented samples for annotation, reducing labeling costs 
by 35–40%. Additionally, the FLI component preserves patient 
data privacy while enhancing model generalization across 
institutions without compromising performance. The proposed 
framework achieves an overall accuracy of 89%, cancer detection 
precision and recall of 84% and an AUC-ROC score of 0.91, 
significantly outperforming baseline models. Importantly, the 
framework delivers balanced performance across both majority 
and minority classes, maintains high precision at elevated recall 
levels and demonstrates computational efficiency comparable 
to traditional methods, making it highly suitable for practical 
deployment in multi-institutional clinical environments.

While the proposed framework demonstrates strong 
performance and efficiency, several avenues for future research 
remain. These include extending the framework to other medical 
imaging modalities such as MRI, CT scans and ultrasound; 
exploring alternative memory token designs to enhance feature 
representation, particularly for rare cancer subtypes; developing 
dynamic client weighting strategies within the federated learning 
setting to better handle data heterogeneity; improving model 
interpretability through enhanced visualization techniques; 
and conducting longitudinal studies to assess the framework’s 
robustness and adaptability with continuously evolving clinical 
data.
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