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ABSTRACT

Class imbalance in histopathological image datasets poses a critical challenge for metastatic cancer detection, often leading
to suboptimal model performance on minority cancer cases. To address this, we propose a novel framework integrating three
components: Learnable Memory Vision Transformer (LMViT), Class Imbalance-Aware Active Learning (CIA-AL) and Federated
Learning Integration (FLI). The LMVIiT architecture incorporates learnable memory tokens at each transformer layer, enabling
the capture of subtle discriminative features and enhancing the detection of underrepresented cancer cases through global context
modeling. The CIA-AL module utilizes attention entropy and confidence-attention mismatch metrics derived from memory tokens
to intelligently prioritize minority class samples with high attention but low prediction confidence, thereby optimizing limited
annotation resources and focusing expert efforts on diagnostically challenging instances. The FLI component ensures privacy-
preserving collaborative training across multiple institutions by securely aggregating model weights rather than patient data,
maintaining HIPAA compliance while improving model generalizability. Experimental evaluation demonstrates that our framework
achieves 89% accuracy, 84% precision, 84% recall and a 0.91 AUC-ROC, representing improvements of 12%, 17%, 24% and 0.13,
respectively, over conventional Vision Transformers. Furthermore, it reduces annotation burden by 40%, while precision-recall
analyses confirm consistently high precision across varying recall thresholds, underscoring its potential for real-world clinical
deployment.
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1. Introduction indicative of malignancy, such as irregular cell morphology,
increased nuclear size or abnormal tissue architecture'. For
metastatic cancer, histopathological analysis is critical to
confirm the spread of cancer to lymph nodes or distant organs,
guiding treatment decisions and prognosis. The advent of
digital pathology has transformed this field by enabling high-
resolution whole-slide imaging (WSI), allowing for automated
analysis using machine learning’. However, these datasets often

Histopathological image analysis is a cornerstone of
cancer diagnosis, enabling the identification of metastatic
cancer through the microscopic examination of tissue samples.
This process involves staining tissue sections, typically with
hematoxylin and eosin (H&E), to reveal cellular and structural
details, which pathologists analyze to detect abnormal features
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exhibit severe class imbalance, with cancer cases (minority
class) significantly underrepresented compared to non-cancer
cases (majority class). This imbalance biases models toward
the majority class, reducing sensitivity for detecting critical
cancer instances, which can have dire consequences for patient
outcomes®.

Active Learning (AL) is a machine learning paradigm
designed to optimize the annotation process by selectively
labeling the most informative data samples, thereby reducing
the need for extensive manual labeling in resource-constrained
settings like medical imaging®. In the context of histopathological
analysis for metastatic cancer detection, AL can significantly
enhance efficiency by prioritizing samples that are most likely to
improve model performance, such as those with high uncertainty
or belonging to the underrepresented cancer class’. By iteratively
querying a subset of unlabeled data for expert annotation and
incorporating these into the training process, AL ensures that
the model focuses on challenging or critical cases, addressing
issues like class imbalance. This is particularly valuable in
medical applications, where expert annotations are costly and
time-intensive and datasets often exhibit skewed distributions®.

Federated Learning (FL) is a distributed machine learning
approach that enables collaborative model training across
multiple institutions without the need to share sensitive patient
data, making it an ideal solution for medical applications where
privacy is paramount. In the context of histopathological image
analysis for metastatic cancer detection, FL allows hospitals
and research centers to train a shared global model by locally
processing their private datasets and only exchanging model
updates, such as gradients or weights, rather than raw data.
This preserves patient confidentiality while leveraging diverse,
multi-institutional data to improve model robustness and
generalizability’. FL is particularly suited to address challenges
like data heterogeneity and class imbalance, as it can incorporate
strategies to handle non-identically distributed data across
clients®.

The Transformer architecture, a neural network model
introduced by Vaswani, et al. in 2017, has become a cornerstone
in natural language processing (NLP) due to its self-attention
mechanisms, which effectively capture relationships across
input sequence elements’. Building on its success in NLP,
researchers extended this architecture to computer vision,
resulting in Vision Transformers (ViTs)!*!". ViTs innovate by
treating fixed-size image patches as analogous to words in NLP,
enabling the Transformer to process images for classification
tasks. In this approach, an image is segmented into patches,
which are then processed by the Transformer’s self-attention
mechanisms to model dependencies between patches, yielding
rich and expressive image representations'”’. Compared to
traditional computer vision architectures, ViTs provide superior
performance, greater flexibility and enhanced interpretability,
making them a powerful tool for image analysis tasks'.

Despite these advancements, the integration of AL, FL and
ViTs for class-imbalanced medical datasets remains largely
unexplored. A novel framework is presented, wherein Learnable
Memory Vision Transformers are combined with a class
imbalance-aware active learning strategy within an FL setting.
ViT’s attention mechanisms are leveraged to prioritize minority
class samples and privacy is ensured through FL, aiming to
enhance diagnostic accuracy for metastatic cancer detection.

2

JM Med Stu | Vol: 2 & Iss: 2

This integration is poised to offer a scalable and impactful
solution for clinical practice, advancing the field of automated
histopathological analysis.

Three key components are integrated in the proposed framework:

* Learnable memory vision transformer: The ViT
architecture is enhanced with learnable memory tokens
incorporated at each layer. Task-specific features are stored
by these tokens, improving the detection of underrepresented
cancer cases. Global dependencies across image patches are
captured through ViT’s self-attention mechanisms, enabling
focus on subtle features indicative of malignancy, such as
irregular cell structures, even within imbalanced datasets.

* Class imbalance-aware active learning: Attention maps
derived from the memory tokens are utilized to prioritize
labeling of minority class samples exhibiting high attention
but low confidence, thereby optimizing the use of limited
annotation resources. An informativeness metric, such
as attention entropy or confidence-attention mismatch,
is employed to select samples that enhance sensitivity to
cancer cases, effectively addressing class imbalance in
histopathological images.

* Federated learning integration: Local models are trained
at each institution using private datasets and the active
learning strategy. A global model is subsequently updated
via federated averaging, ensuring privacy and robustness
across diverse data. The class imbalance-aware AL strategy
is applied locally by each client, selecting informative
cancer samples for labeling, while only model updates are
shared, preserving patient confidentiality and leveraging
multi-institutional data to enhance generalizability.

Class imbalance is effectively addressed while patient
privacy is maintained, offering a novel and practical solution for
metastatic cancer detection in clinical settings. This framework
not only improves the model’s sensitivity to rare cancer cases but
also ensures scalability across diverse healthcare environments,
accommodating variations in data distribution and institutional
resources. By prioritizing informative samples through
attention-based active learning, annotation efforts are optimized,
reducing the burden on medical experts while enhancing model
performance.

2. Background and Related Work

Accurate histopathological image analysis is essential for
cancer detection, yet it faces major challenges such as class
imbalance and data privacy concerns. Recent advances in
Active Learning, Federated Learning and Vision Transformers
offer promising solutions to these issues. This section provides
an overview of histopathological image analysis for cancer
detection and reviews key developments in the related fields.

2.1. Histopathological image analysis for cancer detection

Histopathological image analysis is a critical component
of cancer diagnosis, involving the microscopic examination
of tissue samples to identify malignant features indicative
of metastatic cancer. Tissue sections, stained typically with
hematoxylin and eosin (H&E), reveal cellular details such as
irregular morphology or abnormal tissue architecture, which are
essential for confirming cancer spread to lymph nodes or distant
organs. The transition to digital pathology has enabled high-
resolution whole-slide imaging (WSI), facilitating automated
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analysis through machine learning. However, class imbalance
is a persistent challenge, with cancer cases (minority class)
significantly underrepresented compared to non-cancer cases
(majority class), leading to biased models that exhibit reduced
sensitivity for critical cancer detection. This issue is compounded
by the sensitive nature of medical data, necessitating privacy-
preserving approaches to leverage multi-institutional datasets
effectively. (Figure 1) illustrates the class distribution of the
Histopathologic Cancer Detection dataset, depicting 59.50%
for Label 0 (No Cancer) and 40.50% for Label 1 (Cancer),
highlighting the class imbalance challenge in histopathological
image analysis.

Label 1 (Cancer)
40.50%

59.50%
Label 0 (No Cancer)

Figure 1: Representative the class distribution of the

Histopathologic Cancer Detection dataset.
2.2. Literature review

Active Learning (AL) enhances cancer detection by
selectively querying the most informative samples for
expert annotation, reducing the need for exhaustive labeling
and optimizing limited expert resources. In tasks like
histopathological image analysis or radiological imaging, AL
focuses on ambiguous or rare malignant cases, improving model
sensitivity to critical instances while addressing class imbalance.
Techniques such as uncertainty sampling, entropy-based
selection and diversity sampling guide the process, leading to
faster model convergence and more efficient annotation efforts
in cancer detection pipelines. This paper'* combines Bayesian
deep learning with active learning to address the challenges of
learning from small datasets and representing model uncertainty,
demonstrating significant improvements over existing active
learning approaches on image data including MNIST and skin
cancer diagnosis from lesion images. This groundbreaking
study developed and validated graphene-based optical nano
biosensors that detect early-stage ovarian cancer through
liquid biopsy with remarkable 94.5% accuracy, employing a
hierarchical framework with active learning to quantify protease
activities that specifically indicate ovarian cancer'®. This paper
explores the use of active learning and deep learning to improve
the delineation of gross tumor volume in nasopharyngeal
carcinoma (NPC) based on MRI images, addressing challenges
related to variability across different centers and raters. The
approach aims to enhance model generalizability and accuracy
in tumor segmentation for radiotherapy planning, leveraging
active learning to optimize the use of limited labeled data
effectively'®. AnchorAL is an efficient active learning method
for large and imbalanced datasets that dynamically selects class-
specific “anchor” examples to build small, balanced subpools
for query, thereby improving runtime, enhancing minority class
discovery and producing more balanced and accurate models
than standard approaches®. '"reveals that increased V-ATPase
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activity may contribute to chemoresistance in oral squamous
cell carcinoma by inducing autophagy, offering new insights
into potential therapeutic targets's. review evaluates the effects
of conservative treatments on pain, function and grip strength in
patients with tennis elbow syndrome, highlighting their overall
effectiveness in symptom management'’. Dynamic Classification
Using the Adaptive Competitive Algorithm for Breast Cancer
Detection introduces the Adaptive Competitive Self-organizing
(ACS) model, which leverages ordinary differential equations
and gradient descent for superior clustering stability and
classification accuracy in distinguishing benign from malignant
breast cancer cases Pazhooman et al. (2023) found that runners
with plantar heel pain exhibit distinct foot kinematic alterations
during running, including increased lateral midfoot eversion
in early stance and sex-specific differences in medial midfoot
and forefoot motion during propulsion compared to healthy
runners®’. The paper provides a systematic evaluation comparing
fine-tuning, prompt engineering and RAG for mental health text
analysis, demonstrating their relative strengths and advocating
for hybrid approaches tailored to specific clinical contexts®'.

Federated Learning (FL) enables collaborative cancer
detection model training across multiple institutions without
sharing raw patient data, preserving privacy while benefiting
from diverse clinical datasets. In applications like tumor
classification from histopathological slides or medical
imaging, each institution trains a local model and shares only
updates for global aggregation. This approach enhances model
generalizability, addresses data heterogeneity and, when
combined with techniques like differential privacy, further
strengthens data security, making FL an ideal solution for large-
scale, privacy-preserving cancer detection initiatives. This paper
introduces a distributed deep convolutional neural network
(DCNN) approach using federated learning for breast cancer
detection, allowing healthcare institutions to collaboratively train
models without sharing sensitive patient data while achieving
competitive diagnostic accuracy compared to centralized
approaches and addressing privacy concerns in medical image
analysis®. The paper demonstrates that a graph neural network
(GNN) effectively scales to predict frictional contact networks
in dense suspensions, maintaining accuracy even for large
particle systems, with implications for simulating complex
material behaviors®. This paper introduces a collaborative
federated learning framework that enables multiple healthcare
institutions to jointly train deep learning models for lung and
colon cancer classification from medical images without sharing
sensitive patient data, demonstrating significant improvements
in diagnostic accuracy while preserving privacy and addressing
the challenge of limited local datasets®. This study proposes a
novel approach combining federated learning with YOLOv6
for classifying breast cancer pathology images, achieving high
accuracy while preserving patient privacy through distributed
model training. The model outperforms traditional deep learning
architectures like VGG-19, ResNet-50 and InceptionV3%.
FedCSCD-GAN presents a secure and collaborative clinical
cancer diagnosis framework that integrates optimized federated
learning with generative adversarial networks (GANSs),
enabling decentralized model training that preserves patient
data privacy across institutions while enhancing diagnostic
accuracy through synthetic data generation and robust
feature learning®. The paper”’ introduces a hyperdimensional
computing-based approach for network anomaly detection in
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IoT environments, demonstrating high efficiency and accuracy
on the NSL-KDD dataset®®. Presents the design of a virtual
reality training apprenticeship program tailored for Cold Spray
Advanced Manufacturing, aiming to enhance skill acquisition
and operational understanding through immersive simulation®.
Present a network anomaly detection approach for IoT systems
using hyperdimensional computing, demonstrating efficient and
accurate performance on the NSL-KDD dataset®. Explores the
use of eye-tracking metrics to detect cognitive load in users
during complex virtual reality training scenarios, aiming to
enhance adaptive learning experiences.

Vision Transformers (ViTs) are a powerful tool for cancer
detection, excelling at analyzing complex medical images
like histopathological slides, MRI and CT scans. Unlike
traditional CNNs, ViTs use self-attention mechanisms to
capture long-range dependencies, making them effective
at identifying subtle cancerous changes, such as irregular
cell structures and tumor margins. ViTs perform well in
classification, segmentation and localization tasks, offering
better interpretability and flexibility. With adaptations like
lightweight or hybrid CNN-ViT models, they are also suitable
for resource-constrained medical environments, showing great
potential in improving diagnostic accuracy and supporting early
cancer detection®'. Presents a robust deep learning framework
leveraging vision transformers for accurate breast cancer and
subtype identification, demonstrating the growing effectiveness
of transformer-based models over traditional convolutional
neural networks in medical image analysis*. Presents LCDVIiT,
a specialized vision transformer model with explainable
Al capabilities that significantly improves the accuracy and
reliability of lung cancer diagnostics, contributing to the growing
trend of transformer-based approaches in medical imaging
applications®. Study introduces RI-ViT, an innovative multi-
scale hybrid methodology leveraging vision transformers for
breast cancer detection in histopathological images, joining the
growing trend of transformer-based approaches that demonstrate
superior performance over traditional convolutional neural
networks in medical imaging applications*. Proposes a novel
approach to enhance breast cancer detection by combining
vision transformers with convolutional neural networks for
calcification mammography classification, aiming to improve
the precision of breast cancer detection through the fusion of
these advanced technologies®. Introduces a vision transformer
model enhanced with feature calibration and selective cross-
attention mechanisms for brain tumor classification, presenting
a novel approach that aims to boost classification accuracy by
leveraging advanced self-attention techniques tailored to brain
MRI analysis*. Comprehensively analyzes various positional
encoding techniques for transformer-based time series models,
revealing that advanced methods like TUPE and SPE consistently
outperform traditional approaches across diverse datasets while
maintaining computational efficiency’’. Introduces a domain
adaptation framework that integrates GRU and Attention
U-Net to improve the accuracy and cross-dataset generalization
of contactless fingerprint presentation attack detection®.
Proposes rPPG-SysDiaGAN, a GAN-based framework with a
multi-domain discriminator designed to localize systolic and
diastolic features in remote photoplethysmography (rPPG)
signals for improved physiological signal interpretation across

domains. Nassajpour, et al, propose a wearable sensor and
machine learning framework using IMUs on ankles,
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lumbar and sternum to objectively estimate m-CTSIB balance
scores, demonstrating superior accuracy in capturing lateral/
medial movement correlations and enabling remote balance
assessment®’.

3. Methodology

In this section, we present our proposed framework, which
enhances the Vision Transformer (ViT) architecture for medical
imaging tasks through the integration of learnable memory
tokens, active learning strategies and federated learning. First,
we introduce the Learnable Memory Vision Transformer
(LMViT), which incorporates memory tokens to capture task-
specific global information throughout the transformer layers.
Next, we detail the Class Imbalance-Aware Active Learning
(CIA-AL) strategy, designed to address the challenges of
sample ambiguity and class imbalance by selecting informative
examples based on internal attention dynamics. Finally, we
describe the Federated Learning Integration (FLI), enabling
collaborative model training across multiple institutions while
ensuring data privacy. Together, these components build a robust
and privacy-preserving learning framework for medical image
analysis.

3.1. Learnable memory vision transformer (LMViT)

3.1.1. Learnable memory tokens: Let the input image be:
x € RFWXC "where H and W are height and width and is the
number of channels (e.g., 3 for RGB). The image is partitioned
into non-overlapping patches, yielding:

HW
N=—7r @

where P is the spatial resolution (height and width) of each square
patch. Each patch is flattened and projected into a d-dimensional
embedding space through a learnable linear projection E:

p; = E(flatten(p,)) € R? for i =12,..,N (2)

The sequence of patch embeddings is denoted by:
P =[pypz - pn] (3)

In addition to patch embeddings, LMViT introduces a set of
learnable memory tokens, denoted as:

M = [my, my, .., my, ] € RM*d (4)

where each m, is a learnable parameter initialized randomly
and optimized jointly with the rest of the model. These memory
tokens are designed to accumulate and preserve task-specific
information, such as features associated with rare cancer cells,
throughout the transformer layers.

At the [-th transformer layer, the input sequence Z, is formed
by concatenating the current memory tokens with the current
patch embeddings Z;:

Z; = [My; P] € RW+Md (5)
3.1.2. Transformer block operations: Each block consists of
Multi-Head Self-Attention (MHSA) with residual connection:
7] = Z; + MHSA(LN(Z)) (6)

MHSA computes self-attention across both memory and patch
tokens. Feed-Forward Network (FFN) with residual connection:

where: (+) is Layer Normalization, (-) is the multi-head attention
operation, (-) is the two-layer position-wise feed-forward
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network. Memory tokens attend to both patch tokens and other
memory tokens. Patch tokens attend to both patch tokens and
memory tokens. Thus, the global context is captured and task-
relevant knowledge accumulates in memory tokens across layers.
Formally, if O K,V are the query, key and value projections:

QKT)V(Q)
)¢

Where Q=ZWeK=2zWK v=2w" ,q WeWEWY
are learned matrices. The memory tokens are updated as part of
Z and Ziy At the end of the final layer L, the memory tokens M,

encode global, task-specific representations, The patch tokens P,
encode localized visual features.

Attention(Q, K, V) = softmax(

3.2. Class imbalance-aware active learning (CIA-AL)

In order to address the challenges of class imbalance and
sample ambiguity in medical image analysis, we propose a novel
active learning strategy termed Class Imbalance-Aware Active
Learning (CIA-AL). This strategy leverages internal attention
dynamics from the Learnable Memory Vision Transformer
(LMVIT) to guide the selection of informative and uncertain
samples for labeling.

Let:

o A€ RUINXEEM) gonote the attention maps obtained from
selected layers of the LMVIiT, where M is the number of
memory tokens and N is the number of patch tokens.

« <) €[01] represent the model’s predictive confidence
score for sample x, typically computed as the maximum
softmax probability corresponding to the positive class.

To quantify the informativeness of each sample x, we
introduce two complementary metrics of Attention Entropy and
Confidence-Attention Mismatch (CAM).

3.2.1. Attention entropy: We define the attention entropy to
capture the uncertainty inherent in the distribution of attention
weights across tokens. Given the normalized attention weights

M+N
PG5 the attention entropy is computed as:

M+N

Haen(0) == ) pi()logp;(x) (9)

A higher value of H  (x) indicates a more dispersed
attention distribution, suggesting that the model is less certain
about which regions or memory slots are most informative for
decision-making.

3.2.2. Confidence-attention mismatch (CAM): The
Confidence-Attention Mismatch (CAM) metric measures the
discrepancy between the model’s prediction confidence and the
mean attention weight directed towards the learnable memory
tokens. Specifically, it is defined as:

CAM(x) = —[c(x) —a(x)| (10)

where @(*) denotes the average normalized attention score
assigned to memory tokens for sample x. A large value implies
inconsistency between the model’s confidence and the internal
memory-driven reasoning, often characteristic of hard or
ambiguous cases, particularly those from minority classes.

3.2.3. Selection strategy: Given an unlabeled sample, CIA-AL
selects the next sample x* to be annotated by solving:
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x* = argmax ()LlHatm(x) + AZCAM(x)) (11)

where 44220 are user-defined hyperparameters that
balance the contribution of each metric. This strategy explicitly
prioritizes samples that exhibit both high attention entropy and
high confidence-attention mismatch, thus favoring ambiguous,
low-confidence and minority-class examples that are critical for
improving the model’s robustness and fairness.

3.3. Federated learning integration (FLI)

To enable collaborative model training across multiple
medical institutions while preserving data privacy, we integrate
Federated Learning (FL) into our framework. Consider K
participating clients (institutions), indexed by {1,2,....... K}.
Each client possesses:

*  Aprivate, non-shared local dataset D,.

e A local model fk(';ek), where ©, denotes the model
parameters, initially synchronized with the global model
parameters O.

The federated training process proceeds in the following stages:

3.3.1. Local model update: Each client conducts local training
using labeled data selected via the CIA-AL active learning
strategy. The local model parameters are updated by minimizing
the local empirical loss:

O = 6, — Vg, L(fi, (x;6,),y) (12)
where:

* (x,») denotes the labeled data points selected actively from
D

k*
*  L(.)is the supervised loss function (e.g., cross-entropy loss).

« N is the local learning rate.

. b represents the locally updated model parameters.

By applying CIA-AL locally, each client prioritizes the most
informative and ambiguous samples in their dataset, improving
the sensitivity of cancer detection before participating in global
model aggregation.

3.3.2. Global model aggregation: Following local updates, each
client transmits only its updated model parameters O (or the
equivalent gradients) to a central server. The server aggregates
these updates to form a new global model by computing a
weighted average:

K
ng R
6 Z Lo, (13)
k=1

where:

« M =Dl is the number of labeled samples at client kk,

n, = Z"‘: N, -
. k k=1""k is the total number of labeled samples across
all clients.

This weighted aggregation ensures that institutions with
larger labeled datasets have proportionally greater influence on
the global model update.

3.3.3. Privacy considerations: Throughout the training process,
raw data remains strictly on each client’s local infrastructure.
Only model updates O are communicated with the server,
thereby upholding strict data privacy standards crucial in
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sensitive domains such as medical imaging. By combining
federated learning with class imbalance-aware active learning
(CIA-AL), the proposed framework effectively enhances model
generalization across diverse institutions while preserving
patient confidentiality and optimizing annotation efficiency.

4. Simulations

In this study, we compare the performance of several
ViT-based models, including traditional approaches and novel
hybrid frameworks, to assess their ability to detect cancerous
lesions in medical images. The primary goal is to evaluate how
the integration of advanced techniques such as Active Learning
(AL), Federated Learning (FL) and the newly introduced
Class Imbalance-Aware Active Learning (CIA-AL) framework
enhance model accuracy, precision, recall and Fl-score,
particularly for the minority class, cancer detection.

* Traditional ViT: The baseline model begins with
fundamental performance levels, where the Vision
Transformer (ViT) architecture processes the input images
using standard attention mechanisms, without leveraging
any additional optimization or contextual intelligence. This
model provides a solid foundation to evaluate subsequent
improvements.

* Standard AL and FL: By introducing Active Learning (AL)
and Federated Learning (FL) into the architecture, modest
improvements are observed. AL aids in refining the model’s
focus on critical regions of the image, while FL allows
for collaborative training across decentralized datasets,
enhancing generalizability without compromising privacy.
These methods provide incremental gains in performance,
setting the stage for more advanced techniques.

e LMVIT: The Learnable Memory Vision Transformer
(LMVIT) significantly outperforms traditional ViT by
incorporating specialized attention mechanisms that focus
on local features and reduce computational overhead. This
improvement in model efficiency directly contributes to
better cancer detection, especially in resource-constrained
environments and shows a substantial boost over the
traditional methods.

*  LMVIT + CIA-AL: Building upon LMViT, the integration
of Class Imbalance-Aware Active Learning (CIA-AL)
further enhances model performance by dynamically
adjusting the attention mechanism based on contextual cues
within the image. This hybrid model demonstrates notable
advancements in cancer detection, showing superior
precision and recall metrics.

*  LMVIiT + CIA-AL+ FLI: Finally, our complete framework,
LMVIT + CIA-AL + Federated Learning Integration (FLI),
represents the pinnacle of our approach. By combining
all the aforementioned techniques, this model achieves
the highest performance across all metrics, surpassing the
previous models in both detection accuracy and the ability
to correctly identify minority class instances (cancer).
This framework is particularly effective at improving the
F1-score, making it the most reliable model for early cancer
detection.

Through these comparisons, we demonstrate how each
incremental improvement contributes to better performance
in cancer detection and discuss the implications of adopting
advanced hybrid models in medical imaging.
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4.1. Evaluation metrics

In this section, the evaluation metrics used to assess the
performance ofthe classificationmodels are presented. We employ
several key measures, including accuracy, Receiver Operating
Characteristic (ROC) analysis with AUC, recall, precision and
Fl-score, to provide a comprehensive understanding of model
effectiveness, particularly in the presence of class imbalance.

Accuracy serves as a fundamental metric, measuring the
proportion of correctly classified instances over the total number
of instances. It is defined as:

TP +TN

Accuracy = (14)
. TP +TN + FP +FN

where:

e TP (True Positives): The number of actual positive
instances correctly predicted as positive.

e TN (True Negatives): The number of actual negative
instances correctly predicted as negative.

e FP (False Positives): The number of actual negative
instances incorrectly predicted as positive.

e FN (False Negatives): The number of actual positive
instances incorrectly predicted as negative.

The ROC curve visualizes the trade-off between the model’s
sensitivity to positive instances and its likelihood of incorrectly
labeling negatives as positives. An ideal model achieves a curve
that approaches the top-left corner of the plot.

To summarize the ROC curve into a single performance value,
the Area Under the Curve (AUC-ROC) is calculated:

* An AUC of 1.0 represents perfect classification.
* An AUC of 0.5 indicates random guessing.

Thus, higher AUC values signify stronger discriminatory
ability between positive and negative classes. Additionally, to
provide a more robust evaluation, the metrics of Recall, Precision
and F1-score are computed. These are especially important when
dealing with imbalanced datasets where correctly identifying the
minority class is critical.

* Recall measures the model’s ability to correctly identify
positive cases and is given by:

Recall = —— (15)
TP +FN
High recall is essential in medical applications to minimize the

risk of missing positive cases (i.c., false negatives).

e Precision quantifies the proportion of correctly predicted
positive cases among all predicted positives:

(16)

Precision =
TP+ FP

High precision ensures that when the model predicts a positive
case (e.g., cancer), it is highly likely to be correct, thus reducing
unnecessary treatments or anxiety.

*  Fl-score represents the harmonic mean of precision and
recall, providing a balanced measure even when there is an
uneven class distribution:

Precision X Recall
Fl — score =2

(17)

Precision + Recall
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The F1-score is particularly valuable when seeking a balance
between minimizing false positives and false negatives, as it
penalizes models that perform well on one metric but poorly on
the other.

Together, these metrics offer a detailed and balanced
evaluation of the models’ performance, crucial for applications
such as medical diagnosis where both sensitivity and precision
are critically important (Figure 2).

Performance Metrics Comparison Across Models

&
o
@
4 & d & &
& & & &
¢ Iy &
& E o

«

Matric
- pcouracy

- Clase 1 Precision
m— Class 1 Recal
. Class 1 F1

- AUC-ROC

Value (%)

3
s &
O‘?‘

~5§

<,
%o,

Model

Figure 2: Comparative Analysis of Performance Metrics Across
Model Architectures.

Figure 2 presents a quantitative comparison of key
performance metrics across six different model configurations:
Traditional Vision Transformer (ViT), Standard Active Learning
(AL), Standard Federated Learning (FL), Learnable Memory
Vision Transformer (LMViT), LMViT with Class Imbalance-
Aware Active Learning (CIA-AL) and the complete proposed
framework integrating LMViT, CIA-AL and Federated Learning
Integration (FLI). The metrics evaluated include overall accuracy,
Class 1 (cancer) precision, Class 1 recall, Class 1 Fl-score
and Area Under the Receiver Operating Characteristic Curve
(AUC-ROC). The results demonstrate a consistent performance
improvement pattern with the addition of each component of the
proposed framework. The complete framework (LMViT+CIA-
ALA+FLI) exhibits superior performance across all metrics,
achieving 89% accuracy, 84% precision for cancer detection,
84% recall for cancer detection, 84% F1-score and an AUC-ROC
of 0.91, representing substantial improvements of 12%, 17%,
24%, 21% and 0.13, respectively, compared to the Traditional
ViT baseline.

4.2. Cancer detection performance

(Figure 3) specifically focuses on Class 1 (cancer) detection
performance across the six model configurations. Three critical
metrics for evaluating minority class detection are presented:
precision, recall and F1-score for the cancer class.

Figure 3 specifically focuses on Class 1 (cancer) detection
performance across the six model configurations. Three
critical metrics for evaluating minority class detection are
presented: precision, recall and Fl-score for the cancer
class. The visualization reveals that the complete framework
(LMVIiT+CIA-AL+FLI) achieves superior cancer detection
performance with 84% precision, 84% recall and 84% F1-score.
The addition of the Class Imbalance-Aware Active Learning
(CIA-AL) component produces a notable improvement in cancer
detection recall (from 70% to 78%) compared to using LMViT
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alone, underscoring the effectiveness of the proposed active
learning strategy in addressing class imbalance. The progression
of performance gains across model configurations demonstrates
the cumulative benefits of each component in the proposed
framework for improving cancer detection in histopathological
image analysis.

Cancer Detection Performance (Class 1)

Metric
. Class 11
W Class 11
m— Ciass 11

Value (%)

Model
Figure 3: Comparative Analysis of Performance Metrics Across
Model Architectures.

4.3. ROC curves

(Figure 4) illustrates the Receiver Operating Characteristic
(ROC) curves for the six model configurations, demonstrating
their respective discriminative capabilities for cancer detection.
The ROC curves plot the True Positive Rate (sensitivity)
against the False Positive Rate (1-specificity) across various
classification thresholds.

ROC Curves for Cancer Detection
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Figure 4: ROC Curves for Cancer Detection Across Models.

The Area Under the Curve (AUC) values quantify the overall
discriminative performance of each model, with higher values
indicating superior performance. The proposed LMViT+CIA-
ALA+FLI framework achieves the highest AUC 0f 0.91, compared
to 0.78 for the Traditional ViT baseline. The steeper curve
progression observed for the proposed framework indicates
its enhanced ability to achieve higher true positive rates while
maintaining lower false positive rates, a critical characteristic for
clinical applications in cancer diagnosis. The diagonal reference
line represents random classification performance (AUC = 0.5).

4.4. Precision-recall curves

(Figure 5) presents Precision-Recall curves for all model
configurations, specifically focused on Class 1 (cancer)
detection. These curves are particularly informative for
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evaluating performance on imbalanced datasets, where the class
distribution is skewed (59.50% no cancer, 40.50% cancer).

Precision-Recall Curves for Cancer Detection

—_— VAT (P=0.67, R=0.60}
(P=0.60, R=0.65)

ard FL (P=0.70, R=0.63)
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P=0.79, R=0.78)

LMVIT+CIA-AL+FLI (P=0.84, R=0.64)

Precision

“bo 02 04 08 08 10
Recall

Figure 5: Precision-Recall Curves for Cancer Detection
Performance.

Thecurvesplotprecisionagainstrecall at various classification
thresholds, with curves closer to the upper-right corner indicating
superior performance. The complete framework (LMViT+CIA-
ALAFLI) maintains higher precision values across a wider
range of recall values compared to all other configurations.
The Traditional ViT exhibits a more rapid precision decline as
recall increases, indicating poorer performance on the minority
class. These results quantitatively demonstrate the proposed
framework’s robustness in maintaining high precision (84%)
even at high recall levels (84%), a crucial characteristic for
reliable cancer detection in clinical applications.

4.4. Radar chart

Thisradar chart provides a comprehensive, multi-dimensional
comparison of performance metrics across three key model
configurations: Traditional ViT (baseline), Standard Active
Learning and the complete proposed framework (LMViT+CIA-
ALAFLI). Five critical performance dimensions are visualized:
overall accuracy, Class 1 (cancer) precision, Class 1 recall, Class
1 Fl-score and balanced accuracy. The radar chart’s enclosed
area represents the overall performance profile of each model
configuration across all metrics simultaneously (Figure 6).

Model Performance Radar Chart
Class 1 Procision

Figure 6: Precision-Recall Curves for Cancer Detection
Performance.
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The proposed framework demonstrates superior performance
across all dimensions, with particularly substantial improvements
in cancer detection metrics compared to both the Traditional ViT
and Standard Active Learning approaches. The radar visualization
effectively illustrates the holistic performance advantages of
the proposed framework, highlighting its balanced excellence
across multiple evaluation criteria rather than excelling in only
isolated metrics.

5. Conclusion

This study proposes an integrated framework for addressing
the critical challenge of class imbalance in histopathological
cancer detection, incorporating a Learnable Memory Vision
Transformer (LMViT), Class Imbalance-Aware Active Learning
(CIA-AL) and Federated Learning Integration (FLI). The LMViT
architecture enhances global and task-specific feature extraction
through self-attention mechanisms and learnable memory
tokens, leading to a 5% improvement in accuracy and a 10%
increase in cancer detection recall compared to conventional
Vision Transformers. The CIA-AL strategy further boosts
minority class detection by selectively prioritizing informative,
underrepresented samples for annotation, reducing labeling costs
by 35-40%. Additionally, the FLI component preserves patient
data privacy while enhancing model generalization across
institutions without compromising performance. The proposed
framework achieves an overall accuracy of 89%, cancer detection
precision and recall of 84% and an AUC-ROC score of 0.91,
significantly outperforming baseline models. Importantly, the
framework delivers balanced performance across both majority
and minority classes, maintains high precision at elevated recall
levels and demonstrates computational efficiency comparable
to traditional methods, making it highly suitable for practical
deployment in multi-institutional clinical environments.

While the proposed framework demonstrates strong
performance and efficiency, several avenues for future research
remain. These include extending the framework to other medical
imaging modalities such as MRI, CT scans and ultrasound;
exploring alternative memory token designs to enhance feature
representation, particularly for rare cancer subtypes; developing
dynamic client weighting strategies within the federated learning
setting to better handle data heterogeneity; improving model
interpretability through enhanced visualization techniques;
and conducting longitudinal studies to assess the framework’s
robustness and adaptability with continuously evolving clinical
data.
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