ISSN: 2583-9888 ({))URF PUBLISHERS
S/

DOI: doi.org/10.51219/JAIMLD/ashmitha-nagraj/657 connect with research world

Journal of Artificial Intelligence, Machine Learning and Data Science

https://urfpublishers.com/journal/artificial-intelligence

Vol: 2 & Iss: 1 Research Article

Architectural Trade-offs: Microservices vs. Monoliths in Financial Systems

Ashmitha Nagraj*

Citation: Nagraj A. Architectural Trade-offs: Microservices vs. Monoliths in Financial Systems. J Artif Intell Mach Learn & Data
Sci 2019 2(1), 3259-3265. DOIL: doi.org/10.51219/JAIMLD/ashmitha-nagraj/657

Received: 02 February, 2019; Accepted: 18 February, 2019; Published: 20 February, 2019
*Corresponding author: Ashmitha Nagraj, Principal Full Stack Engineer, USA, E-mail: nagrajashmitha@gmail.com

Copyright: © 2019 Nagraj A., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

ABSTRACT

The rapid evolution of financial technology has necessitated scalable and efficient software architectures for financial
applications. This paper presents a comparative analysis of monolithic and microservices architectures, focusing on their
suitability for monetary systems regarding scalability, maintainability, security and compliance. While monolithic architectures
have traditionally dominated financial applications due to their simplicity and centralized governance, microservices have gained
traction with the rise of cloud computing and DevOps methodologies. This study highlights the trade-offs between the two
architectural paradigms through an in-depth evaluation of performance metrics, real-world case studies and implementation
challenges. The findings suggest microservices offer superior scalability and fault isolation but introduce increased operational
complexity and security challenges. Conversely, monoliths provide a stable and controlled environment but struggle with
flexibility and high-volume processing. The paper concludes by offering strategic recommendations for financial institutions
seeking to transition or optimize their system architectures, considering regulatory requirements, system reliability and long-
term sustainability.

Keywords: Microservices, Microservices vs Monoliths, Scalable Architecture, Financial Application

1. Introduction Microservices Architecture Market

1.1. Background and context 7 . -

CAGR

(2023 - 2032)
H

The financial technology (fintech) landscape has evolved
significantly, driven by the need for faster, more secure and
scalable solutions (Figure 1). Financial applications, such as 18.5% J 55 6
banking systems, trading platforms and payment gateways,
require robust software architectures to handle high transaction
volumes, ensure data integrity and comply with stringent
regulatory requirements®. The choice between monolithic and
microservices architectures has become a critical decision I
for financial institutions, directly impacting scalability, 2018 2019 2020 2021 2022 2023 2024 2025 2026 2030
maintainability and operational efficiency’.

[}
5

Market Size in USD Bn

Figure 1: This figure depicts the use of microservice architecture
in the market in the last couple of years and their expected
increase of usage in future years.

https://doi.org/10.51219/JAIMLD/ashmitha-nagraj/657
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/ashmitha-nagraj/657

Nagraj A.,

Monolithic architectures, characterized by a single, unified
codebase, have historically dominated the financial sector due
to their simplicity and ease of deployment. However, the rise of
cloud computing and DevOps practices has led to the growing
adoption of microservices, which decompose applications into
more minor, independently deployable services®.

1.2. Problem statement and purpose

Choosing exemplary architecture is critical for financial
applications due to their unique requirements, such as high
availability, real-time processing and compliance with regulations
like GDPR and PCI-DSS'. Financial institutions face challenges
such as legacy system integration, scalability bottlenecks and the
need for rapid innovation, all of which influence architectural
decisions. This paper aims to provide a comparative analysis of
monolithic and microservices architectures, focusing on their
suitability for scalable financial systems. By examining their
strengths and weaknesses, this study seeks to guide financial
institutions in making informed architectural choices.

1.3. Scope and structure of the paper

The paper is structured as follows: Section 2 examines
monolithic architecture in financial applications, including its
advantages and limitations. Section 3 explores microservices
architecture, highlighting its relevance and challenges. Section
4 outlines key requirements for financial applications, such
as performance, security and reliability. Section 5 provides a
comparative analysis of the two architectures across scalability,
complexity and cost. Section 6 presents real-world case studies,
while Section 7 discusses implementation challenges and
best practices. Section 8 explores future trends and Section 9
concludes with recommendations and areas for further research.

2. Monolithic Architecture in Financial Applications
2.1. Definition and characteristics

Monolithic architecture integrates all components of an
application such as the user interface, business logic and data
access layer into a single codebase (Figure 2). This approach
simplifies development and deployment, as the entire application
is built and deployed as a single unit'’.

Monolithic Architecture

Business Layer

Data Interface

—
— |

Figure 2: Monolithic architecture.

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

Monolithic architecture is often preferred for their
straightforward design, which reduces the complexity of
managing multiple components. However, this simplicity
can become a limitation as the application grows in size and
complexity.

2.2. Historical context

Monolithic architecture has been the foundation of many
financial systems, including core banking platforms and trading
systems. Their popularity stems from their simplicity and the
ease of managing a single codebase, especially in an era when
distributed systems were complex to implement®. Many financial
institutions still rely on legacy monolithic systems due to the high
cost and risk of migration. These systems, while stable, often
struggle to meet the demands of modern financial applications,
such as real-time processing and scalability.

2.3. Advantages

e Simplicity: A single codebase simplifies development,
testing and debugging [10]. Developers can work on the
entire application without worrying about inter-service
communication or compatibility issues.

* Centralized governance: Easier to enforce security and
compliance policies across the application. This centralized
approach ensures consistency in implementing regulatory
requirements.

* Initial deployment: Faster initial deployment due to fewer
moving parts. Monolithic applications are often quicker to
set up and deploy in the early stages of development.

2.4. Disadvantages and limitations

e Scalability challenges: Scaling a monolithic application
requires scaling the entire system, even if only one
component faces increased demand®. This can lead to
inefficiencies and increased costs.

¢ Maintenance complexity: As the codebase grows, making
changes becomes riskier and more time-consuming.
Developers must navigate a large, interconnected codebase,
which can slow down innovation.

* Risk of downtime: A failure in one component can bring
down the entire system, impacting business continuity. This
lack of fault isolation is a significant drawback for mission-
critical financial applications.

3. Microservices Architecture in Financial Applications
3.1. Definition and core principles

Microservices architecture divides an application into
multiple independent services, each dedicated to a distinct
business function. These services interact through APIs,
messaging frameworks or communication protocols such
as gRPC* This structured approach enhances flexibility and
scalability, enabling individual services to be developed,
deployed and expanded separately. However, it also introduces
complexity in managing inter-service communication and data
consistency.

3.2. Relevance to financial institutions

Microservices align well with the Agile and DevOps
methodologies increasingly adopted by financial institutions.
They enable faster innovation, granular scalability and

Nagraj A,

improved fault isolation, making them ideal for modern fintech
applications®. For example, banks can deploy new features or
updates to specific services without disrupting the entire system.
This flexibility is particularly valuable in a rapidly evolving
financial landscape.

Microservices Architecture

=2
l /\
e S

TR
- ww W

Figure 3: Microservices architecture.

3.3. Advantages

* Granular scalability: Services can be scaled independently
based on demand, allowing financial institutions to optimize
resource usage®. This is particularly useful for handling
peak loads, such as during market openings.

e Fault isolation: Ensures that failures in one service do not
affect the entire system, improving overall reliability. This
is critical for financial applications, where downtime can
result in significant financial losses.

¢ Continuous delivery: Enables faster deployment cycles
through CI/CD pipelines, allowing financial institutions to
respond quickly to market demands'®.

3.4. Disadvantages and challenges

e Operational complexity: Managing multiple services
requires robust monitoring, logging and tracing tools [8].
This can increase the operational overhead for financial
institutions.

 Data consistency: Ensuring transactional consistency
across services can be challenging, especially in distributed
systems’. Financial applications often require strict
adherence to ACID principles, which can be challenging in
microservices architecture.

* Governance overhead: Coordinating development across
multiple teams can increase management complexity.
Financial institutions must establish explicit governance
models to ensure service consistency and compliance.

3.5. Microservices and devOps integration

One of the key advantages of microservices architecture in
financial applications is its seamless integration with DevOps
methodologies, which emphasize continuous integration and
continuous deployment (CI/CD). By breaking down applications
into smaller, independently deployable services, microservices
enable financial institutions to adopt agile development cycles,
accelerating feature releases and bug fixes'.

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

DevOps practices, such as automated testing, infrastructure
as code (IaC) and monitoring, play a crucial role in ensuring the
reliability of microservices-based financial systems®. Financial
institutions can use tools like Docker and Kubernetes to deploy
microservices in isolated environments, ensuring consistency
across different deployment stages. Service orchestration
platforms such as Istio and Consul also help manage inter-
service communication, security policies and load balancing. By
leveraging CI/CD pipelines, banks and fintech firms can push
updates to individual services without affecting the entire system,
reducing downtime and improving customer experience. For
instance, if a payment processing service requires enhancement,
it can be updated and deployed independently, minimizing risks
to other critical financial functions®.

3.6. Microservices and API-driven banking

The adoption of microservices in financial applications
has accelerated the growth of API-driven banking, enabling
seamless integration with third-party services and open banking
platforms'®. Financial institutions are increasingly offering
public, private and partner APIs that allow external applications,
fintech startups and regulatory bodies to access banking
functionalities securely’.

How Do Fintech APIs Work

Data presentation

/

Request and
authentication

oo
oo

!

S

N
R~

s,

7N
Data

/ processing

Data
/ exchange

Figure 4: This figure depicts how APIs work in Fintech.

User makes the beginning request to use the API, before
which they are authenticated and the request is sent to backend
source using APIs to retrieve the required information. This
information is transferred to the client-side through an API. For
example, Open Banking APIs enable authenticated customers
to connect their bank accounts to third-party financial services,
providing enhanced functionalities such as automated budgeting,
loan comparisons and investment tracking. In monolithic
architecture, such integrations would be complex and require
extensive code modifications, whereas microservices allow
banks to expose specific services as APIs without disrupting the
entire system. Event-driven API gateways facilitate secure and
efficient communication between microservices and external
systems. These gateways handle authentication, request routing
and load balancing, ensuring high availability and security for
financial transactions''.

3.7. Microservices in fraud detection and risk management

Microservices —architectures support real-time fraud
detection and risk assessment by allowing financial institutions
to deploy Al-driven analytics services that continuously
monitor transactions for suspicious activity*. Unlike monolithic
systems, where fraud detection logic may be embedded within
a large, inflexible codebase, microservices enable independent
deployment of fraud detection algorithms, ensuring rapid
updates and improvements.

Nagraj A.,

By leveraging machine learning-powered microservices,
banks can analyze historical transaction data, detect anomalies
and flag potential fraud in real time". Furthermore, these
microservices can integrate with external fraud detection
systems, enhancing security measures without significantly
modifying core banking platforms. For instance, a dedicated
fraud detection microservice can evaluate transactions based
on geolocation, spending patterns and behavioral biometrics.
If suspicious activity is detected, it can trigger an automated
security response, such as temporary account freezes, multi-
factor authentication (MFA) challenges or real-time alerts to
customers®.

3.8. Challenges in microservices security for financial
institutions

While microservices offer flexibility and scalability, they also
introduce unique security challenges in financial applications.
Unlike monolithic architectures, where security policies are
applied centrally, microservices require a distributed security
model where each service must be secured individually'’. One
primary concern is securing inter-service communication. Since
microservices communicate over APIs and message queues,
attackers can exploit vulnerabilities if proper authentication and
encryption mechanisms are not in place’. Financial institutions
must implement Zero Trust security models, which enforce strict
access controls and continuous authentication for every service
interaction®.

Data consistency and integrity present security risks in
microservices-based financial systems. Traditional monolithic
architecture ensures ACID (Atomicity, Consistency, Isolation,
Durability) compliance within a single database, whereas
microservices often rely on eventual consistency models, which
may introduce vulnerabilities in financial transactions®. Financial
institutions can adopt distributed ledger technologies such as
blockchain to mitigate this, ensuring immutable transaction
records and enhanced transparency. Another key challenge is
API security, as financial microservices often expose critical
services through APIs. Implementing OAuth 2.0, JWT (JSON
Web Tokens) and API gateway security policies can help
safeguard sensitive financial data from unauthorized access'>.

4. Key Requirements for Financial Applications
4.1. Performance and scalability

Financial applications must handle high transaction
volumes and provide real-time analytics. Scalability is critical
to accommodate peak loads, such as during market openings
or payment processing [3]. Both monolithic and microservices
architecture must meet these demands, but they do so in different
ways. Monoliths scale vertically, while microservices scale
horizontally, offering greater flexibility.

4.2. Security and compliance

Regulatory requirements like GDPR, PCI-DSS and SOC2
mandate stringent security measures. Financial applications
must ensure secure data handling, encryption and access
control'’. Microservices introduce additional security challenges,
such as securing inter-service communication, but also offer
opportunities for fine-grained access control.

4.3. Reliability and availability

High availability and disaster recovery strategies are essential

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

to minimize downtime and ensure business continuity. Financial
institutions must implement robust failover mechanisms and
redundancy to meet these requirements®. Microservices can
enhance reliability with fault isolation capabilities but require
careful orchestration to avoid cascading failures.

4.4, Data integrity and consistency

Financial transactions require strict adherence to ACID
principles, prioritizing data consistency. Monolithic architectures
inherently support ACID transactions, while microservices often
rely on eventual consistency models®. Financial institutions
must carefully evaluate these trade-offs when choosing an
architecture.

5. Comparative Analysis
5.1. Scalability

Microservices offer granular scalability, allowing financial
institutions to scale specific services based on demand®. In
contrast, monoliths require scaling the entire application, which
can lead to inefficiencies. This makes microservices more
suitable for applications with varying workloads.

5.2. Complexity and development effort

Monoliths are simpler initially but become complex over
time as the codebase grows. Microservices require upfront
investment in infrastructure and tooling, but they offer greater
flexibility in the long term'’. Financial institutions must weigh
these factors based on their specific needs.

5.3. Deployment and operational model

Microservices enable faster, more frequent deployments,
while monoliths have longer deployment cycles. This makes
microservices more suitable for financial institutions that
prioritize rapid innovation®. However, the operational complexity
of microservices can offset these benefits.

5.4. Observability and monitoring

Microservices require distributed tracing and log
aggregation, whereas monoliths can be monitored as a single
unit. This increases the operational overhead for microservices
but provides greater visibility into system performance’.

5.5. Cost implications

Microservices may incur higher infrastructure and operational
costs due to the need for multiple containers or VMs. Monoliths,
while simpler, can become costly to scale and maintain over
time'".

5.6. Security considerations

Microservices increase the attack surface but allow for fine-
grained security controls. Monoliths, while simpler to secure,
may lack the flexibility needed to implement advanced security
measures®.

As illustrated in (Figure 5), the data exchange between
components differs significantly in monolithic and microservice
architectures. Using a monolithic architecture builds up an
architectural debt by incorporating stronger integrations and
centralized data storage. In contrast, microservices operate more
autonomously, managing their data with minimal dependencies

Nagraj A,

SOA
Architecture

@mﬂﬁ«ﬁ%ﬁﬁl
-

Monolithic Architecture Microservice Architecture

Ml

Figure 5: Model of different types of software architecture.

6. Case Studies / Real-World Examples

6.1. Large financial institution (Monolith to Microservices
Migration)

A major bank migrated its core banking system to
microservices, reducing deployment times by 70% and
improving scalability'’. The migration involved breaking down
the monolithic application into more minor, independently
deployable services. This allowed the bank to respond more
quickly to market demands and improve fault isolation.

6.2. Fintech startup (Microservices from the Ground Up)

A fintech startup adopted microservices early, enabling rapid
innovation and scaling to millions of users. By decomposing
its application into small, autonomous services, the startup was
able to deploy new features quickly and scale specific services
as needed*. However, the startup also faced challenges managing
inter-service communication and ensuring data consistency.

6.3. Stable monolith scenario

A trading platform retained its monolithic architecture due to
its stability and low maintenance requirements. The platform’s
relatively simple requirements and low transaction volume made
a monolith a cost-effective choice [3]. This case highlights that
monoliths can still be viable for specific financial applications.

7. Implementation Challenges and Best Practices
7.1. Organizational and cultural factors

Adopting microservices requires a shift to DevOps and
cross-functional teams. Financial institutions must foster a
culture of collaboration and continuous improvement to succeed
with microservices®. This cultural shift can be challenging, but
realizing the benefits of microservices is essential.

7.2. Technological enablers

Containerization (Docker, Kubernetes) and service meshes
(Istio) are critical for microservices. These technologies
provide the infrastructure needed to manage and orchestrate
microservices effectively'’. Financial institutions must invest in
these tools to ensure the success of their microservices initiatives.

7.3. Testing and quality assurance

Contract testing and continuous testing are essential for
microservices. These practices ensure that services remain
compatible and functional as they evolve®. Financial institutions
must implement robust testing frameworks to maintain the
reliability of their microservices-based applications.

7.4. Security and compliance best practices

Zero Trust principles and encryption are critical for securing

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

financial applications. Financial institutions must implement
these measures to protect sensitive data and comply with
regulatory requirements®. Microservices offer opportunities for
fine-grained access control but also introduce additional security
challenges.

7.5. Scalability and performance tuning

Scalability Comparison: Monolith vs Microservices
1000
- Microservices

- Monolith

Respo nse§'| me(ms)

o] 500 1000
Load (requests per second)

1500

Figure 6: Performance comparison between monolithic and
microservice architectures under increasing load.

Autoscaling and load balancing are key to handling peak
loads. Financial institutions must implement these strategies to
ensure the scalability and performance of their applications'.
Microservices, with their granular scalability, are particularly
well-suited for these strategies.

As shown above (Figure 6), it demonstrates that while the
monolithic application’s response time increases rapidly under
high load, the microservices architecture maintains better
performance as the load increases. This is mainly because
the microservices approach allows for independent scaling of
individual services.

8. Future Trends and Innovations
8.1. Serverless architectures

Serverless computing offers potential cost savings and
scalability for financial applications. By abstracting away
infrastructure management, serverless architecture allows
financial institutions to focus on developing business logic®.
However, serverless computing is still maturing and may not be
suitable for all use cases.

8.2. Al-driven observability

Al can enhance system monitoring and incident management.
By leveraging machine learning algorithms, financial institutions
can predict and prevent system failures’. This can improve the
reliability and performance of financial applications.

8.3. Blockchain and distributed ledger technologies

Blockchain can improve transparency and security in
financial transactions. Financial institutions are exploring the
integration of blockchain with microservices to enhance data
integrity and reduce fraud®. However, blockchain introduces
additional complexity and scalability challenges.

8.4. Edge computing

Edge computing can reduce latency for trading systems. By
processing data closer to the source, financial institutions can
improve the performance of latency-sensitive applications'”.

Nagraj A.,

This is particularly relevant for high-frequency trading and real-
time analytics.

8.5. The Integration of monoliths and microservices: A
hybrid approach

Rather than fully committing to monolithic or microservices
architectures, many financial institutions embrace a hybrid
strategy that utilizes both. This approach retains monolithic
structures for stable core banking operations while implementing
microservices for adaptable, customer-facing functionalities®.
Organizations can modernize their systems by gradually
transitioning from monoliths to microservices while minimizing
operational risks. One effective strategy within hybrid
architectures is the “strangler pattern,” which allows institutions
to phase out monolithic components by incrementally replacing
them with microservices'?. This method ensures seamless
transitions, reducing potential downtime while maintaining
business continuity. Additionally, hybrid architectures support
the gradual adoption of cloud-native technologies, striking a
balance between cost-effectiveness and enhanced scalability.

8.6. Cloud-native adoption in financial systems

With cloud computing gaining widespread adoption,
financial organizations are increasingly shifting toward cloud-
native architectures that integrate well with microservices. These
cloud-native setups enable institutions to optimize their systems
using auto-scaling, containerization and distributed computing,
ultimately improving efficiency and system reliability'.
Additionally, cloud-based solutions facilitate multi-region
deployment, ensuring operational resilience and adherence to
regulatory standards. However, adopting cloud-native financial
services presents challenges related to regulatory compliance
and data sovereignty. Institutions must navigate issues such
as cross-border data transfers, security risks and reliance on
cloud providers’. Nevertheless, modern cloud platforms offer
specialized compliance solutions, such as region-specific data
centers, robust encryption mechanisms and secure identity
management frameworks to address these concerns.

8.7. Event-driven architecture for financial applications

Financial applications benefit significantly from event-driven
microservices architectures, which use messaging systems and
event logs to facilitate real-time data processing. By leveraging
message queues and pub/sub mechanisms, financial systems can
efficiently handle high transaction volumes without creating
bottlenecks''. This approach benefits applications requiring
instant data processing, such as payment gateways, fraud
detection systems and trading platforms.

For example, high-frequency trading firms rely on event-
driven architectures to process stock price updates, execute
trades and assess risks in real time'?. Distributed event-processing
tools like Apache Kafka and RabbitMQ ensure seamless
communication between microservices while improving fault
tolerance and system reliability.

8.8. Artificial intelligence and machine learning in
financial services

Artificial Intelligence (AI) and Machine Learning (ML) are
transforming the financial sector by enhancing fraud detection,
risk analysis and customer interactions. While microservices
architectures allow financial institutions to integrate Al-driven

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

tools seamlessly organizations must address data consistency
and regulatory compliance concerns when implementing Al
solutions. Al-powered observability tools further strengthen
microservices monitoring by predicting system failures and
identifying performance anomalies. For instance, Al-driven
fraud detection mechanisms can analyze transaction behaviors
in real time, identifying suspicious activities before fraudulent
transactions are completed’. Additionally, Al-powered chatbots
integrated within microservices frameworks enhance customer
experience by providing automated responses and personalized
financial recommendations.

9. Conclusion
9.1. Key insights

This research highlights the advantages and challenges
of monolithic and microservices architectures in financial
applications. While monolithic systems offer simplicity and
centralized control, microservices provide flexibility, improved
scalability and better fault isolation. Institutions must carefully
assess their operational needs, regulatory requirements and
long-term objectives before choosing an architecture.

9.2. Recommendations for financial institutions

Before adopting microservices, financial institutions should
evaluate their existing IT infrastructure to determine the most
effective transition strategy. A hybrid model incorporating both
architectures can facilitate modernization while preserving the
stability of critical financial systems. Additionally, incorporating
cloud-native technologies, event-driven architectures and
Al-driven solutions can enhance the efficiency and resilience of
financial applications.

9.3. Future research opportunities

Further studies should investigate the potential of blockchain
integration, serverless computing in financial applications and
Al-driven automation within microservices environments.
Long-term case studies evaluating the benefits and drawbacks of
microservices adoption in financial institutions would provide
valuable insights for industry’s best practices.

10. References

1. Armin B, Abbas H, Pooyan J. Microservices Architecture Enables
DevOps: an Experience Report on Migration to a Cloud-Native
Architecture. IEEE Software, 2016;33: 1.

2. LenB,Ingo W, Liming Z. DevOps: A Software Architect’s Perspective,
2015.

3. Nicola D, Saverio G, Alberto LL, et al. Microservices: yesterday,
today and tomorrow, 2017.

4. https://martinfowler.com/articles/microservices.html

5. Jamshidi P, Pahl C, Mendon¢a NC. Patterns for microservices
architecture. IEEE Software, 2018;35: 68-76.

6. Knoche H, Hasselbring W. Using microservices for legacy software
modernization. IEEE Software, 2018;35: 44-49.

7. Nadareishvili I, Mitra R, McLarty M, et al. Microservice Architecture:
Aligning Principles, Practices and Culture. O’Reilly Media, 2016.

8. Newman S. Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, 2015.

9. Pahl C, Jamshidi P. Microservices: A systematic mapping study.
International Conference on Cloud Computing and Services Science
(CLOSER), 2016.

https://dl.acm.org/doi/10.1109/ms.2016.64
https://dl.acm.org/doi/10.1109/ms.2016.64
https://dl.acm.org/doi/10.1109/ms.2016.64
https://dl.acm.org/doi/10.5555/2810087
https://dl.acm.org/doi/10.5555/2810087
https://arxiv.org/abs/1606.04036
https://arxiv.org/abs/1606.04036
https://martinfowler.com/articles/microservices.html
https://www.semanticscholar.org/paper/Using-Microservices-for-Legacy-Software-Knoche-Hasselbring/11e34eb4aa898eeb684b30abf2952974f29cba14
https://www.semanticscholar.org/paper/Using-Microservices-for-Legacy-Software-Knoche-Hasselbring/11e34eb4aa898eeb684b30abf2952974f29cba14
https://dl.acm.org/doi/10.5555/3002814
https://dl.acm.org/doi/10.5555/3002814
https://dl.acm.org/doi/10.5555/2904388
https://dl.acm.org/doi/10.5555/2904388
https://dl.acm.org/doi/10.5220/0005785501370146
https://dl.acm.org/doi/10.5220/0005785501370146
https://dl.acm.org/doi/10.5220/0005785501370146

Nagraj A,

10. Richardson C. Microservices Patterns: With Examples in Java.

11.

Manning Publications, 2018.

Taibi D, Lenarduzzi V, Pahl C. Processes, motivations and issues for
migrating to microservices architectures: An empirical investigation.
IEEE Cloud Computing, 2017;4: 22-32.

12.
13.

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

Thones J. Microservices. IEEE Software, 2015;32: 116-116.

Zimmermann O. Microservices tenets: Agile approach to service
development and deployment. Computer Science - Research and
Development, 2017;32: 301-310.

https://www.scirp.org/reference/referencespapers?referenceid=3943531
https://www.scirp.org/reference/referencespapers?referenceid=3943531
https://www.semanticscholar.org/paper/Processes%2C-Motivations%2C-and-Issues-for-Migrating-to-Taibi-Lenarduzzi/cbae34e03fd47e3aa905203fe52255769a9e9f13
https://www.semanticscholar.org/paper/Processes%2C-Motivations%2C-and-Issues-for-Migrating-to-Taibi-Lenarduzzi/cbae34e03fd47e3aa905203fe52255769a9e9f13
https://www.semanticscholar.org/paper/Processes%2C-Motivations%2C-and-Issues-for-Migrating-to-Taibi-Lenarduzzi/cbae34e03fd47e3aa905203fe52255769a9e9f13
https://dl.acm.org/doi/10.1109/MS.2015.11
https://dl.acm.org/doi/abs/10.1007/s00450-016-0337-0
https://dl.acm.org/doi/abs/10.1007/s00450-016-0337-0
https://dl.acm.org/doi/abs/10.1007/s00450-016-0337-0

