ISSN: 2583-9888 yURF PUBLISHERS

C
R
DOI: doi.org/10.51219/JAIMLD/ashmitha-nagraj/658 = connect with research world

Journal of Artificial Intelligence, Machine Learning and Data Science

https://urfpublishers.com/journal/artificial-intelligence

Vol: 7 & Iss: 2 Research Article

AWS-Based Cloud and Microservices Architecture for Scalable Financial Applications

Ashmitha Nagraj*

Citation: Nagraj A. AWS-Based Cloud and Microservices Architecture for Scalable Financial Applications. J Artif Intell Mach
Learn & Data Sci 2024 7(2), 3266-3269. DOI: doi.org/10.51219/JAIMLD/ashmitha-nagraj/658

Received: 02 April, 2024; Accepted: 18 April, 2024; Published: 20 April, 2024
*Corresponding author: Ashmitha Nagraj, Principal Full Stack Engineer, USA, E-mail: nagrajashmitha@gmail.com

Copyright: © 2024 Nagraj A., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

ABSTRACT

Cloud computing and microservices transform financial services by offering scalable, affordable, and secure solutions for
core functions. This paper explores how financial institutions can make the most of Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS) models to manage large volumes of sensitive data, improve fraud detection
systems, and streamline compliance with evolving regulations. This paper proposes a cloud-native architecture emphasizing
microservices design principles, modularity, and independent deployment to increase agility, reduce operational overhead, and
foster rapid innovation. This paper demonstrates significant cost savings, tighter security controls, and faster time-to-market
for new banking features through a comparative analysis of real-world case studies. Decoupling monolithic applications into
more minor services enables financial organizations to experiment, test, and deploy upgrades without disrupting mission-critical
transactions. Ultimately, the synergy between cloud computing and microservices enables financial institutions to provide
enhanced customer experience, stay competitive, and attain sustainable growth within a highly regulated industry.

Keywords: Cloud computing, Microservices architecture, FinTech, AWS

L. Introduction 1.2. Objectives and contributions
1.1. Context and motivation 1.2.1. Main objectives:

Cloud computing is critically relevant in the financial sector , performance and resilience: Confirm that cloud solutions
because it addresses challenges such as data security, regulatory lower latency, improve disaster recovery with mirrored data
compliance, cost efficiency, and rapid innovation. Enhanced storage, and support strong business continuity.

data protection measures like end-to-end encryption and
multifactor authentication-help safeguard sensitive customer
information and meet stringent regulations (e.g., PCI DSS,
GDPR)’. Shifting from capital-intensive on-premises setups to integrated compliance features support strict regulatory
a flexible, pay-as-you-go model enables financial institutions requirements (PCI DSS, GDPR, SOX)’.

to scale computing resources on demand and accelerate time- + Agijlity and innovation: Show that decomposing

* Security and compliance: Demonstrate that robust security
protocols (e.g., encryption, multifactor authentication) and

to-market for innovative services. Furthermore, centralized monolithic applications into modular, decoupled
cloud-based data repositories make it easier to harness advanced microservices accelerates development cycles, streamlines
analytics and artificial intelligence tools for fraud detection and risk management, and supports rapid deployment of new
risk management. This not only improves customer trust but also features such as Al-driven fraud detection’.

strengthens the operational resilience.

https://doi.org/10.51219/JAIMLD/ashmitha-nagraj/658
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/ashmitha-nagraj/658

Nagraj A.,

1.2.2. Key contributions:

* Areference architecture that leverages cloud computing and
microservices to enable real-time transaction processing,
improved fault tolerance, and overall agility in financial

applications.
e Performance benchmarks comparing traditional,
on-premises monolithic solutions with containerized

microservices deployed on leading cloud platforms.

e A security framework incorporating zero-trust principles,
multifactor authentication, and encryption to ensure
compliance with regulations such as PCI DSS and GDPR".

* Best practices for continuous integration and continuous
deployment (CI/CD), robust monitoring (e.g., distributed
tracing), and automated infrastructure provisioning**.

2. Literature Review

Existing research on cloud computing for financial services
spans academic studies and industry frameworks. For example,
the AWS Cloud Adoption Framework for Financial Services'
and IBM Cloud for Financial Services'® offer architectural
blueprints and best practices for designing secure, scalable
environments in regulated industries. In the academic realm,
works such as “Microservices in Financial Applications: A
Systematic Review”' and “Secure Cloud-Native Architectures
for Banking” highlight design principles and modular
deployments that are critical for sensitive financial operations.
Lessons from other regulated sectors are also instructive. In
healthcare, modular designs enable decoupled management
of patient records and diagnostic services'’, while government
applications leverage microservices to enforce data privacy and
inter-agency communication'®. These experiences underscore
the importance of fine-grained access control, robust monitoring,
and data segmentation principles directly applicable to financial
services.

3. Methodology / Proposed System
3.1. System architecture / Model

The proposed architecture is a cloud-native, microservices-
based solution tailored for financial applications. It comprises
independently deployable services (e.g., fraud detection,
transaction management, compliance, and user management)
running on a container orchestration platform such as
Kubernetes®. Each microservice is encapsulated within its
container and communicates via RESTful APIs or asynchronous
message queues (e.g., RabbitMQ, Apache Kafka)*. A centralized
API Gateway handles external client requests, providing
authentication, rate limiting, and logging functionalities (Figure

1).
3.1.1. Core modules include:

e Transaction service: Processes payments, fund transfers,
and balance inquiries.

* Fraud detection service: Utilizes machine learning
models (e.g., Random Forests, LSTM) to analyze real-time
transaction patterns®.

* Compliance module: Enforces regulatory standards (PCI
DSS, GDPR) and maintains audit trails.

e Supporting services: Cover user identity management,
analytics, and notification handling.

J Artif Intell Mach Learn & Data Sci | Vol: 7 & Iss: 2

Security is enforced at multiple layers (Figure 2). Data in
transit is protected with TLS/SSL encryption, and role-based
access control (RBAC) and token-based authentication (OAuth
2.0, JWT) restrict unauthorized access'’. A zero-trust approach
is applied so that each microservice validates incoming requests
independently'®.

Google Kubernetes Engine A—ma;?n E’\ars):c C?:lame'
Service for Kubernetes
(GKE) (EKS)

Authn/z

: o ;
y
Authn/z
€ ==
a Database

Service
Ul Service Payment

External traffic
Authn/z

: Order Service
Service

e e

Figure 2: Diagram of Detailed Microservices Communication
and Zero-Trust Security Model.

3.2. Technical details / Algorithms

3.2.1. Fraud detection: Machine learning algorithms, such
as Random Forests and LSTM models, are deployed to detect
anomalies in real-time transaction data’. Transaction streams
pass through a feature engineering layer before feeding into
these models for classification and anomaly scoring.

3.2.2. Load balancing and data analytics: Techniques
like round-robin, least-connection, or consistent hashing are
employed within the orchestration platform to distribute traffic
evenly®. High-volume transaction processing is supported by
distributed data structures such as Redis for in-memory caching
and NoSQL databases (e.g., Cassandra or MongoDB) that
employ sharding and replication'’.

3.2.3. Privacy and regulatory adaptations: To meet regulatory
requirements, algorithms are adapted with privacy-preserving
techniques such as differential privacy and k-anonymity (Figure
3), ensuring compliance with data protection regulations®.

kubernetes

Async/sync
replication
O ™ Cassandra Node Pods * O

cassandra-a service cassandra-b service

! !

App1 pod App1 pod

Datacenter 2

O 0

Datacenter 1

4

Q

Q O

Figure 3: Example of a Multi-Node Cassandra Cluster with
In-Memory Caching This diagram depicts a multi-node
Cassandra cluster integrated with in-memory caches at each
microservice layer. It illustrates how the system handles high-
volume transaction processing with low latency and improved
fault tolerance.

3.3. Implementation environment

The architecture uses AWS as the primary cloud provider,
chosen for its high availability and regulatory compliance (PCI

Nagraj A,

DSS, GDPR, SOC 2)">. AWS managed services such as AWS
Lambda, Amazon RDS, and Amazon KMS support scalable and
secure operations.

Microservices development uses frameworks like Spring
Boot (Java) and Node.js. Docker containers encapsulate each
service, while Kubernetes (Amazon EKS) manages container
orchestration and load balancing®. A CI/CD pipeline is established
using GitHub Actions integrated with AWS Code Pipeline,
which automates testing, security scanning (via SonarQube
and OWASP ZAP), and deployments (Figure 4). Infrastructure
provisioning is handled using Terraform!?.

elease

Figure 4: CI/CD Pipeline and Infrastructure Automation Flow
Diagram.

This figure shows the CI/CD flow, from source control (e.g.,
GitHub) to automated testing and security scans, deployment
via AWS Code Pipeline, and infrastructure provisioning with
Terraform.

3.4. Security and compliance

Financial applications must comply with strict regulatory
standards such as PCI DSS, GDPR, and SOX [9]. To meet these
requirements, all sensitive data is encrypted at rest (AES-256)
and in transit (TLS 1.3), with encryption keys managed by
the AWS Key Management Service (KMS)’. The system uses
OAuth 2.0 and OpenID Connect with RBAC and ABAC!' for
authentication.

Threat modeling and vulnerability management are
integral to the design. The system adheres to OWASP ASVS
guidelines and employs automated security scanning tools
(e.g., AWS Inspector, OWASP ZAP) to detect and remediate
vulnerabilities'*. Continuous audit logging via AWS CloudTrail
and SIEM solutions ensures regulatory compliance is always
maintained.

3.4.1. Fortify and sonarqube scans: Fortify distinguishes code
quality issues concerning security. It covers scan types like
dynamic application security testing (DAST), Static application
security testing (SAST), software composition analysis (SCA),
and mobile by analyzing the source code for SQL injection,
cross-site scripting (XSS), and authentication weaknesses.
However, SonarQube is used for code quality, security,
compliance, reliability, and mitigating bugs and vulnerabilities.
Implementing these tools together in the CI/CD pipeline
provides a seamless workaround for developers. It helps them
get a centralized report of these scans for every build, allowing
them to analyze data-driven issues and mitigate them at the right
time, thus improving the software development process. These
automated scans reduce technical debt, increase code quality,
and enhance the application’s durability.

J Artif Intell Mach Learn & Data Sci | Vol: 7 & Iss: 2

4. Results and Evaluation
4.1. Experimental setup

The architecture proposed in this paper has been set up in a
hybrid lab environment that utilizes AWS, Kubernetes (EKS),
and Docker containers. The performance of the fraud detection
service using precise metrics such as precision, recall, and
F1-score while also ensuring robust security through penetration
tests conducted with OWASP ZAP and AWS Security Hub'.

4.2. Metrics
Some of the key performance indicators (KPIs) are:

* Latency: One crucial metric is latency, which is how long it
takes for a transaction to go through.

* Throughput: Measures the number of transactions that are
processed every second.

* Fraud detection accuracy: To ensure fraud detection is
accurate, it is evaluated using precision, recall, and the F1
Score®.

* Cost efficiency: Costs are managed primarily by
saving money through smart auto-scaling and resource
optimization.

e Compliance readiness: Assessed through automated audit
logging and adherence to regulations’.

e Security posture: Evaluated with metrics such as Mean
Time to Detect (MTTD) and Mean Time to Respond
(MTTR)™.

» Agility: Measured by deployment frequency and rollback.

Performance Comparison: Traditional vs Cloud Microservices
12000

Traditional Monolithic
Cloud Microservices

10000

8000

Values

6000

4000

2000

Performance Metrics

4.3. Qualitative evaluation
4.3.1. Benefits:

Improving team efficiency: Allowing microservices to
work independently means that the development teams can
tackle different tasks simultaneously. This teamwork speeds up
updates and helps make changes faster. Using auto-scaling and
centralized monitoring makes managing resources easier. This
approach reduces reliance on manual management and boosts
the overall efficiency of system operations. This modular design
also allows updating specific services without interrupting the
entire system, leading to smoother updates and less hassle.

4.3.2. Challenges:

* Regulatory compliance complexity: Since each
microservice functions as an independent entity, ensuring
compliance for every service adds an extra layer of

Nagraj A.,

regulatory work and increases validation efforts.

* Infrastructure management challenges: Dealing with a
decentralized microservices setup can feel like juggling a few
too many balls at once. Companies often find it challenging
to keep track of service discovery, API versioning, and
ensuring all services communicate smoothly.

* Steep learning curve: Switching from a monolithic setup
to microservices is complicated. Developers and IT teams
need to get comfortable with new tools, updated security
measures, and fresh best practices, which requires much
time and training.

4.4. Comparative analysis
When compared to traditional on-premises systems:

e Scalability & performance: Cloud-based microservices
dynamically adjust to traffic loads and deliver 4x higher
throughput, whereas on-premises systems are limited by
fixed resources®’.

* Cost efficiency: The pay-as-you-go cloud model reduced
CAPEX by approximately 35%, while on-premises models
incur high hardware and maintenance costs’.

* Security & compliance: Automated patching, zero-trust
security measures, and encryption in the cloud architecture
lower the risk of vulnerabilities and data breaches by up to
40%"0-14,

Independent benchmarks suggest that switching from
monolithic systems to containerized microservices can enhance
API response times by up to 50%'" and considerably lower
breach risks'*.

5. Discussion

The experimental findings indicate that adopting a cloud-
native microservices architecture can significantly enhance the
efficiency, security, and scalability of financial applications.
Organizations can reduce latency and improve system resilience
by implementing auto-scaling and distributed deployment
strategies. Additionally, employing machine learning for
fraud detection greatly bolsters security measures, resulting
in more reliable financial transactions. The modular nature
of microservices fosters ongoing innovation and facilitates
easier integration with third parties, allowing for a more
straightforward adaptation to a rapidly changing market.
Nevertheless, challenges persist, such as the complexities
of regulatory compliance, communication overhead among
services, and the significant learning curve associated with
adopting microservices. Future research may concentrate on
enhancing fraud detection models for improved accuracy and
exploring the potential of decentralized ledger technologies to
boost security and scalability in financial systems.

6. Conclusion

Financial apps are getting a significant upgrade thanks
to cloud-native microservices. This new approach makes
things run smoother and cheaper for banks and other financial
companies and helps them to stay on the right side of industry
rules. Developers can work faster, and IT teams find it easier
to manage systems. Plus, it allows for constant improvements
without sacrificing security. As banks update their tech, cloud
and microservices are necessary to meet customers’ wants. At

J Artif Intell Mach Learn & Data Sci | Vol: 7 & Iss: 2

the same time, it helps manage risks and follow regulations.
Looking ahead, there will likely be better fraud detection using
Al and improvements in handling tons of transactions quickly.

7. References

1. Bala S, et al. Microservices in Financial Applications: A Systematic
Review. IEEE Access, 2023.

2. Sharma NK, Lee R. Secure Cloud-Native Architectures for Banking.
International Journal of Cloud Computing, 2022.

3. Kumar A, Lee B. Microservices Deployment in Cloud Environments:
An Architectural Overview. IEEE Access, 2022;10: 55201-55213.

4. Santos M, et al. Secure Service Interaction in Financial Microservices:
A Zero-Trust Model. ACM Transactions on Internet Technology,
2023;21.

5. Li X, Zhang M. Real-Time Fraud Detection in Microservice-Based
Banking. IEEE Access, 2023;11: 65231-65242.

6. Rivera A, et al. Privacy-Preserving Algorithms for Financial
Transactions. ACM Transactions on Privacy and Security, 2022;26.

7. Brown M, et al. Cloud Adoption Strategies for Secure Banking
Applications. IEEE Cloud Computing, 2023;8.

8. Kaur S, et al. Orchestrating Financial Microservices with Kubernetes.
ACM Transactions on Cloud Computing, 2022;27.

9. Smith J, et al. Ensuring Regulatory Compliance in Cloud-Based
Financial Systems. IEEE Transactions on Security and Privacy,
2023;40.

10. Patel R, et al. Zero-Trust Architectures for Financial Microservices.
ACM Transactions on Internet Security, 2022;22.

11. Zhang M, et al. Cloud-Based Microservices for Financial Transactions:
Performance and Security Evaluations. IEEE Access, 2023;11: 34213-
34227.

12. Gupta A, et al. Testing Microservices at Scale: A Case Study in
Financial Applications. ACM Transactions on Cloud Computing,
2022;19.

13. Patel J, et al. Performance Metrics in Cloud-Based Banking Systems.
IEEE Cloud Computing, 2023;9.

14. Brown A, et al. Security Benefits of Microservices in Financial
Applications. ACM Transactions on Internet Security, 2022;25.

15. https://aws.amazon.com/solutions/financial-services/
16. https://www.ibm.com/cloud/architecture/solutions/financial-services

17. Singh MM. Adoption of Microservices Architecture for Healthcare
Systems. IEEE Access, 2022.

18. KumarR, Gupta S. Secure Microservices for Government Applications.
ACM Digital Library, 2023.

https://aws.amazon.com/solutions/financial-services/
https://www.ibm.com/cloud/architecture/solutions/financial-services

