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1

 A B S T R A C T 

Rotating machinery plays an important role in industry. Fault diagnosis of rotating machinery can ensure the normal 
operation of industrial production. Using images to diagnose mechanical faults is a commonly used method. Therefore, some 
image enhancement techniques are useful for rotating machinery fault diagnosis. This review introduces the methods and 
principles of image enhancement. Firstly, the methods of image feature enhancement are described, and the applications of these 
methods in rotating machinery are listed. In addition, new image enhancement methods are summarized, including filter-based 
image enhancement, model-based image enhancement, and learning-based image enhancement. Finally, the trend toward image 
enhancement in the field of fault diagnosis is discussed. This review attempts to introduce more image feature enhancement and 
extraction methods for fault diagnosis, in order to provide some inspiration for researchers and promote the development of 
mechanical equipment fault diagnosis.

Keywords: image feature enhancement; fault diagnosis; rotating machinery; rolling bearing

Review Article

Vol: 1 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

Introduction
Image analysis is a commonly used diagnostic technique for 

identifying faults in mechanical equipment. For instance, when 
diagnosing bearings, a range of techniques can be employed 
such as spectral curve analysis, time domain waveform analysis, 
bifurcation diagram analysis, envelope spectrum analysis, 
and amplitude-frequency curve analysis to intuitively assess 
the condition of the bearing1. There are various methods for 
converting data into images. In the field of diagnosing mechanical 
faults, image analysis has proven to be effective2. The use of 
image analysis can effectively reduce noise compared to direct 
analysis of the original data3. Image analysis can identify the 
features of a fault and improve fault detection4. The accuracy 
of detecting mechanical surface cracks is directly impacted 
by the quality of image analysis technology5. Image feature 
information can be logically extracted more effectively than the 
original digital data6.

Image-based statistical analysis has become the foundation 
for extracting significant feature information in various fields7. 
For instance, Dong et al. utilized image stitching algorithms and 
texture scanning of cable images to assess the degree of cable 
corrosion8. In the diagnosis of motor faults, Long et al. employed 
point symmetry mode9. Two-dimensional images are more 
effective at representing data compared to one-dimensional data, 
and extracting scale-invariant features from images enhances the 
detection of motor operation. Liu et al. used aerial images to 
diagnose insulators in power lines10. Ma et al. enhanced medical 
images to improve pathological diagnosis and automatic disease 
screening11. Yan et al. analyzed remote sensing images to 
detect the type and number of vehicles under various weather 
conditions12. Additionally, in the field of remote sensing, Zhao 
et al. studied the structural characteristics of remote sensing 
images and used them to generate accurate descriptions13. 
Therefore, image processing finds application in various fields. 
Historically, the methodology for image enhancement was 
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relatively straightforward; however, the resultant effects were 
unsatisfactory. For example, signal-converted images contain 
additional noise, while image blurring hinders feature extraction. 
Hence, the technology of image enhancement is continually 
evolving to better highlight the required features in an image 
using different methods.

Image enhancement is commonly used in fault diagnosis 
to denoise and reduce texture, effectively highlighting fault 
information and aiding in subsequent diagnosis. This technique 
employs specific methods to extract necessary information from 
the original image or suppress irrelevant details. Image feature 
enhancement primarily relies on techniques such as image 
denoising, segmentation, and fusion14. Pixel values are analyzed 
to achieve denoising for grayscale images or adjust colors 
for color images15. In fault diagnosis, gray-value images are 
frequently employed and commonly undergo processing using 
techniques such as gray-value transformation and histogram 
adjustment16. Color images contain more information compared 
to grayscale images17. In a color image, the value of a single 
pixel is determined not only by its grayscale value but also by 
the combination of multiple color components. Common color 
image models include RGB, HSV, HLS, and others18. An RGB 
image consists of the three primary colors: red, green, and blue19. 
HSV utilizes hue, saturation, and value components, while HIS 
incorporates hue, saturation, and intensity color structure. HSI 
outperforms RGB space in pixel recognition due to its richer and 
more discriminative spectral information. However, HSI suffers 
from spectral redundancy20.

Currently, numerous image-based diagnostic methods 
are utilized. However, there has been a lack of systematic 
summarization of image fault feature enhancement methods 
by scholars. Therefore, this paper aims to facilitate the use 
of images for diagnosing rotating machinery by discussing 
various image feature enhancement methods such as filtering, 
template matching, gray level transformation, image fusion, 
and segmentation. The scope of this discussion is restricted 
to rotating machinery. Consequently, this review summarizes 
various image feature enhancement methods to improve the 
effectiveness of fault diagnosis in rotating machinery. The aim is 
to provide readers with valuable insights on diagnosing rotating 
machinery through the use of images.

The rest of the organization of this paper is as follows: in 
Section 2, we review the image enhancement technology, 
classify the image enhancement technology, and clarify the 
principle. In Section 3, the new methods of image enhancement 
are introduced from the aspects of denoising, model-based, 
and learning-based. The fourth section introduces the method 
of image fusion. In Section 5, the image processing method 
of image fusion is introduced. In Section 6, other potential 
directions in image enhancement are indicated.

Approaches of Image Feature Enhancement
In the field of fault diagnosis, numerous methods are employed 

to convert data into images. Fig.2 presents a compilation of 
images utilized in mechanical diagnosis, encompassing seven 
distinct types such as recurrence plots, synchronized dot 
patterns, Gramian Angular Fields, Markov transition fields, 
fast kurtograms, and Spectra. These methods involve mapping 
one-dimensional time series onto a two-dimensional space. Fault 
diagnosis is achieved by extracting image features21. Various 
signals result in distinct images after conversion. The objective 
of image feature enhancement is to enhance the differentiation 

between images, making it a significant research direction. 
Image feature enhancement serves as an effective processing 
method for fault types with diverse categories and limited 
features. Moreover, the primary objective of fault diagnosis for 
mechanical equipment is image classification. Consequently, 
the research focuses on image feature enhancement and 
classification.

Figure 1: Classification of traditional image enhancement 
techniques

Figure 2: Six types of images are used in fault diagnosis

In the fault diagnosis of rotating machinery, these images 
contain a significant amount of signal information. The 
texture, color, and shape of the image can reflect various signal 
characteristics from different perspectives. Consequently, 
distinct images correspond to different signals, enabling the 
classification of mechanical signal faults. However, which 
image features better reflect the signal characteristics? What 
methods can be employed to enhance image processing? What 
are the key characteristics of image enhancement methods? 
These are significant research questions. The objective of 
image processing is to enhance diagnostic accuracy. Therefore, 
image enhancement represents a valuable research direction. 
Subsequently, this paper will discuss image enhancement 
methods from the perspectives of filtering, template creation, 
and grayscale transformation.

Image feature enhancement based on filtering

Image enhancement in the frequency domain requires 
the initial application of Fourier transform to the image. 
Subsequently, it is necessary to filter the transformed signal. 
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As depicted in Fig.3, the enhanced image is reconstructed by 
applying the inverse Fourier transform to the filtered signal.

Figure 3: Frequency domain image enhancement flow chart

Noise in mechanical signals is typically concentrated in 
the high-frequency domain. Applying a low-pass filter to the 
Fourier-converted signal can effectively suppress and eliminate 
noise22. In computer vision, the high-frequency domain of 
the spectrum captures image texture details, whereas the 
low-frequency domain represents smooth regions. Figure 3 
illustrates that altering the filtering function can result in diverse 
filtering effects. To filter the image signal, the converted signal  
is multiplied by the filtering function .

The eq.1 shows the definition of an ideal low-pass filter. 
Due to the low-pass filter’s filtering mode only considering  
as the demarcation point, the filtering method is simplistic. In 
fault diagnosis, the high-frequency noise of the image can be 
effectively eliminated.

Where D0 is the cutoff frequency and D(p, q) represents the 
distance between the point (p, q) in the frequency domain and 
the image center in the frequency domain.

Eq.2 demonstrates the Butterworth low-pass filter (BLPF) 
function. The filtering effect varies depending on the chosen 
value for the filter order n. The filter boundary of the Butterworth 
low-pass filter is smoother than that of an ideal low-pass filter.

Where n is the order of the filter.

The Gaussian low-pass filter (GLPF) function is shown 
in eq.3, because the filter function is approximately Gaussian 
distribution, so the filter boundary is smoother and the high-
frequency information will not be completely lost23. Compared 
with the above two filters, this one can better ensure the details 
of the image.

Unlike the low-pass filter, the high-pass filter eliminates 
the low-frequency signal from the image while preserving the 
high-frequency component. The high-pass filter smooths out the 
image’s smoother areas while preserving texture details. Eq.4 
demonstrates the function of the ideal high-pass filter (IHPF), 
which retains the high-frequency components contrary to the 
ideal low-pass filter. In the diagnosis of surface details, the 

high-pass filter effectively filters the image background while 
preserving texture details like cracks. However, the removal 
of all high-frequency components can cause image distortion. 
The Butterworth high-pass filter (BHPF) and Gaussian high-
pass filter (GHPF), complementary to their respective low-pass 
filters, can smooth the texture details in the filtered image. Eq.5 
demonstrates the Butterworth high-pass filter function (BHPF), 
while eq.6 demonstrates the Gaussian high-pass filter function 
(GHPF). Among the three high-pass filters, the Gaussian high-
pass filter provides the smoothest image outcome.

By combining the aforementioned low-pass and high-pass 
filtering methods, homomorphic filtering is able to independently 
consider the low-frequency and high-frequency components of 
the image. Homomorphic filtering is a widely used approach 
capable of removing multiplicative noise. Furthermore, it 
enhances both contrast and brightness, thereby achieving image 
enhancement. Eq.7 demonstrates the homomorphic filtering 
function. The discrepancy in Hhp determines whether the image 
filtering is low-pass or high-pass, while the magnitude of γ 
determines the strength of the filtering.

Where γH represents the high frequency weight, γL represents 
the low frequency weight, and Hhp can be the above filtering 
function.

In the field of mechanical engineering, filtering is widely 
recognized as an effective method for noise elimination and 
feature enhancement. To assess the health condition of bearings, 
Kaya et al.24 utilized eight distinct filters to eliminate noise 
and improve the accuracy of the classification algorithm. By 
processing the data with the aforementioned filters, the signal’s 
features were extracted. Additionally, Wang et al.25 introduced 
the low-pass filter and sparsity-based algorithm (LpfSpaA) to 
effectively separate feature fluctuations from noise in planetary 
gearboxes. Their proposed algorithm incorporates a low-pass 
filter, which facilitated the extraction of potential faults. Similarly, 
Zhang et al.26 presented a novel unsupervised learning algorithm 
named fast intrinsic component filtering, which is adept at fault 
diagnosis in rotating machinery. Building upon this, Li et al.27 
devised a Gabor convolution filtering method with robustness 
demonstrated through bearing and gear datasets validation. The 
Gabor convolution filter effectively suppresses the attenuation 
of critical image features. Lastly, Zou et al.28 developed the 
multi-scale weighted entropy morphological filtering technique, 
which possesses the ability to heighten the dissimilarity between 
various fault data classes while simultaneously reducing 
computational complexity. This filter manages to significantly 
decrease the learning cost while maintaining high classification 
accuracy.

In the diagnosis of mechanical parts for fault detection, 
different filtering methods yield varied effects owing to the 
presence of diverse surface texture defects. For instance, certain 
defects require distinguishing from the background texture, while 
others, being minute in size, necessitate filtering out a broad 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3Sun Y., et al.,

4

range of background images to accentuate the defect features. 
Consequently, in image-based fault diagnosis, the primary 
objective of filtering lies in eliminating extraneous information 
while preserving detailed fault characteristics, as the quality of 
filtering directly impacts subsequent defect detection and fault 
diagnosis. To enhance the quality of welding images, Effat et al.29 
employed interlaced multi-level bilateral filtering and wavelet 
thresholding methods for image enhancement. This approach 
effectively reduces image noise and accentuates damage and 
defect features in welded joints, facilitating convenient fault 
diagnosis. In contrast to filtering methods in the spatial and 
frequency domains, bilateral filtering combines information 
from both domains, offering the advantage of retaining sharp 
edges while smoothing out details. The conversion formula 
for the bilateral filter at the pixel with position  is presented 
in eq.8. Similarly, Tomasz utilized multi-stage filtering and 
entropy for processing gearbox vibration signals30. This method 
offers denoising capabilities, enabling the observation of clear 
symptoms of damage in the resulting denoised image.

Where σd and σγ are controlling parameters in spatial and 
intensity domains. The value of c is as follows:

Where N(x) is the spatial neighborhood of x. I(x) represents 
the value of the pixel at the x position.

Various filtering effects can be achieved by adjusting the two 
parameters σd and σγ. For instance, reducing the spatial parameter 
σd can enhance image sharpness, while increasing the value of 
σγ can bring the bilateral filter closer to a Gaussian filter. In the 
diagnosis of welding images conducted by Effat, an increase in 
σd results in a decrease in the peak signal-to-noise ratio (PSNR) 
and a smoother output image. To further enhance the image, 
Effat incorporates the wavelet threshold filter in combination 
with the bilateral filter by decomposing the image into low 
and high frequencies and subsequently applying a multi-level 
filtering process. The synthesized enhanced image, represented 
in fig.4, enables more prominent visualization of defect outlines. 
This multilevel filtering approach enhances the clarity of defect 
regions in the image and mitigates background interference, 
facilitating easier fault diagnosis.

Figure 4: Multi-level Image Enhancement flowchart based on 
bilateral filtering and Wavelet threshold method

The aforementioned methods effectively enhance the 
visibility of fault textures in the field of fault diagnosis. 
Nonetheless, the calculation becomes time-consuming due to 
the multi-level image decomposition and filtering involved. To 
expedite the texture smoothing process in images, Ghosh et al.31 
devised an improved version of the bilateral filter that accelerates 
the computing speed by an order of magnitude while preserving 
the quality of the filter. The key principle revolves around 
modifying one of the Gaussian kernel functions employed 
in the original bilateral filter. By utilizing both Gaussian and 
box kernels, the computational efficiency is enhanced without 
significant visual discrepancies after image processing. As a 
result, the updated formula for the bilateral filter is exhibited in 
eq.10.

Where ϕ is a Gaussian range kernel, as shown below:

Where σ Controls the width of the scope core.

The improved bilateral filter is based on the classical bilateral 
filter and allows for control of the filtering effect through the 
parameter σ. A smaller value of σ results in less smoothing, 
while a very small value of σ essentially eliminates the filtering 
effect. Conversely, a larger value of σ leads to smoother edges. 
Within a certain range, the choice of σ can produce a desirable 
texture filtering effect in the image. Numerous methods have 
been developed to enhance the bilateral filter, such as modifying 
the filtering kernel function and incorporating additional 
algorithms. Table 1 lists some of these improved methods and 
their respective advantages.

In summary, different filtering methods can yield different 
effects, improving the edge and texture features of an image. 
Consequently, selecting an appropriate filter can accentuate 
specific characteristics in the signal.

Table 1. Improved method based on bilateral filter

No  Improved bilateral filter
method Advantage Ref

1 Asymmetric bilateral expo-
nential decay wavelet

Match the pulse character-
istics in the vibration sig-
nal more flexibly

32

2
 Bilateral filter and its
 variants in least Squares
Framework

 Fast operation speed and
 adaptability to different
image types

33

3
Gaussian lifting frame-
 work for fast bilateral and
non-local mean filtering

 Runs fast and preserves the
texture of the image well

34

4

 Replace the bilateral filter
 of each pixel based on the
weighted average of adja-
cent pixels

Improve spatial smooth-
ness and reduce the influ-
ence of speckle noise

35

5  Fast bilateral filter based on
intensity between pixels

 Fast running speed, easy to
expand to color images

36

Image feature enhancement based on template

In addition to processing individual pixels and adjusting 
the distribution of grayscale values, templates are employed to 
process both the pixels of an image and their adjacent pixels. A 
template functions as a filter by convolving the corresponding 
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pixels of the image using a template matrix. Consequently, the 
pixel value of the enhanced image depends not only on the 
original corresponding pixel but also on the grayscale value 
of the surrounding pixels. The template essentially serves as a 
convolution kernel, allowing for different effects like smoothing, 
filtering, and image sharpening when traversing across the 
entire image. Different templates yield varying outcomes in the 
processed images.

As an example, consider the neighborhood averaging 
method. In a 3 × 3 template, typically represented by eq.12, the 
purpose of this template is to average the grayscale values of the 
pixels in the m-th row and n-th column of the image with the 
eight surrounding pixels, subsequently assigning the calculated 
values to the pixels in the same row and column. Although this 
template offers the advantage of simple calculation, it falls short 
in effectively removing salt and pepper.

When the template H is changed, namely, when altering 
the convolution operator, the image can be sharpened. Image 
sharpening serves to enhance the texture of the image, and 
different sharpening template operators can produce varying 
degrees of sharpness. Commonly used template operators 
include the Robert operator, Prewitt operator, Sobel operator, 
and others. Texture pixels typically possess notable distinctions 
from the surrounding pixel values, which can be expressed 
through the gradient along a specific direction. Once the image 
is transformed into a grayscale image, it can be considered as a 
two-dimensional matrix, divided into the row direction X and 
the column direction. The Robert operator, shown in eq.13, 
features a 2 × 2 convolution kernel. The Prewitt operator, shown 
in eq.4, and the Sobel operator, shown in eq.15, employ a 3 × 
3 convolution kernel. Incorporating such symmetry ensures the 
preservation of the image’s center point after processing37.

Where x represents the edge detection operator along the 
x-axis and y represents the edge detection operator along the 
y-axis.

Taking the Sobel operator as an example, the schematic 
diagram in Fig.5 displays the operation of the Sobel operator 
on the image. In this operation, the gradient value in a specific 
direction is obtained by computing the weighted sum of the gray 
values within the template region. The resulting gradient value 
from both directions represents the gray value of the pixel after 
passing through the template, as indicated by eq.16. Ammar et 
al.38 employed the Sobel and Prewitt operators to segment the 
image. The fault diagnosis of an induction motor is achieved by 
dividing the region. Long et al.39 utilized the Canny operator for 
texture detection and feature extraction of the wind turbine. The 
abnormal data from the wind turbine were statistically eliminated. 
Each operator yields different effects on various images due to 
the divergence in templates for each direction. For instance, 

the Robert operator offers accurate edge positioning and rapid 
processing speed due to its second-order matrix template. On the 
other hand, the Prewitt operator is able to suppress noise.

Figure 5: Enhanced image based on sobel operator template

where  represents the gradient in the  direction.  represents 

the gradient in y direction.

Image feature enhancement based on model

In 1964, Edwin H. Land introduced the Retinex theory, which 
has become widely employed in the fields of machine vision and 
fault diagnosis. For instance, Chen et al. utilized the Retinex 
model to enhance images, thereby providing higher quality 
images for subsequent fault diagnosis of the current carrying ring. 
This model originates from human vision experiments, which 
have yielded several key findings40. Firstly, the retina processes 
different wavelengths of light separately, and the color of a given 
point is influenced by the colors surrounding it. Additionally, 
the edges play a significant role in color vision. By conducting 
pre-calibration, luminance calculation, and post-calibration 
on RGB images, the Retinex model effectively enhances the 
images. This model regards the image as a combination of the 
illuminating layer and the reflective layer, as depicted in eq.17.

where  represents the illumination layer image, represents 
the reflection layer image, and  represents the mixed image.

Compared to traditional linear and nonlinear methods, the 
model offers adaptive image enhancement. By dividing the image 
into two parts, the model effectively addresses the mixing of the 
illumination and reflection layers, eliminates image artifacts, and 
generates images with clear contrast and natural color. To further 
enhance the overall image quality, constraints can be added to 
the model based on specific objectives, such as emphasizing 
texture information, improving image exposure, and reducing 
image noise. For instance, the Single Scale Retinex (SSR) 
approach considers the lighting layer image, denoted as I(x, y), 
as a low-frequency component. By applying low-pass filtering to 
the illuminated image layer, the essential image information can 
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be preserved. The decomposition formula of the SSR method is 
shown in eq.18. This method decomposes the image into two 
layers, where F(x, y), represents the center surround function, 
which has a Gaussian-like form as depicted in eq.19. The center 
surround function captures the low-frequency part of the image. 
Filtering this low-frequency information results in only the high-
frequency component remaining, enabling the model algorithm 
to retain the image’s high-frequency information, including edge 
details. In the case of Multi Scale Retinex (MSR), it employs 
different Gaussian functions based on the SSR method. Multiple 
SSR images are then averaged to maintain high image fidelity.

Where c is a constant, and F(x, y) is a central circumferential 
function.

The image enhancement method described above is based on 
the Retinex model, which utilizes a Gaussian filter to characterize 
the illumination layer of the image. However, it may not be 
suitable for all images. In order to enhance the model, various 
image enhancement effects can be achieved. Table 2 provides 
a list of different improvement methods based on the Retinex 
model.

Table 2. Image Enhancement method based on Retinex Model

No Method Advantage  Ref

1
 Deep reflectance estimation
 network based on a Retinex
variant

 Adapt to more different
 lighting conditions and
reduce color deviation

41

2

 Combining exponentialized
 Mean Local Variance with
 Structure and Texture Aware
Retinex (STAR) model

Extract precise struc-
ture and texture map

42

3 A local flatness based vari-
ational approach to Retinex

 Correction of uneven
illumination

43

4

A retinex-based decom-posi-
 tion model for a hazy image
and a novel end-to-end im-
agedehazing network

Overstretching and un-
derstretching are real-

 ized by automatically
 adjusting the attention
weight of channel di-
rection and pixel direc-
tion

44

5 Retinex based detail preserv-
ing variational model

 Decompose directly in
 the image domain to
maintain image details

45

Based on the Single Scale Retinex method, Michela et al.46 
presented the Path-Based Milano Retinex Algorithm (PMRA) 
after studying the Milano Retinex family. This algorithm enables 
precise analysis of the local structure in both grayscale and 
color images. The main principle involves incorporating the 
calculation of pixel luminance intensity along a specific path, as 
depicted in eq.20.

Where Rtk is the ratio function of the intensity between pixels, 
and n is the number of pixels, δk is defined as follows:

Where ε is the threshold.

The formulas in the third and fourth functions differ slightly 
from the original Retinex. The calculation method for pixel 
intensity along the path from x1 to x4 under the conditional 
equation δk is elucidated in fig.6.

Figure 6: A method for calculating the luminance intensity of 
MR along the path62

From the conditional function, it can be observed that δk(Rtk) 
equals 1 only when Rtk  tends to 1. As shown in fig.6, the intensity 
ratio function Rtk =140/130>0 between x1 and x2  and  , resulting 
in the resetting of  to 0. On the other hand, Rtk =108/140<1 
between x2 nad x3, leading to C1=108/140. 

After conducting experiments, Michela et al. noted that the 
value of L(x) is inversely proportional to the contrast of pixels at 
position x. Consequently, this model allows for the measurement 
of pixel-level contrast between two images. The eq.22 
defines this contrast measure. After performing the necessary 
calculations, the pixel value of the smooth regions in the image 
is set to 0. However, in non-uniform areas, the value remains 
positive but less than 0. This algorithm highlights a significant 
correlation between contrast and luminance intensity L(x). Since 
it is based on the Retinex algorithm, it effectively eliminates 
minor intensity fluctuations in the scene and reduces the impact 
of noise on contrast. Ultimately, this improves the performance 
of image retrieval in low-light environments.

Where  

  I is the 
color channel of RGB image, γk represents the path.

Similarly, Zhou et al.47 developed a low-light image 
enhancement algorithm by simplifying the Retinex model based 
on the low-light model. In this approach, the Max RGB technique 
is employed to estimate the illumination layer, while an edge-
preserving filter is utilized to refine the image after applying 
MaxRGB. The model consists of two components: lighting-
aware source generation and multi-source fusion. By processing 
the input image using this model, the visual naturalness, color 
distribution, and overall quality of the image are improved 
compared to both single and multi-source models. Moreover, 
Gu et al.48 introduced a fractional-order variational model based 
on the Retinex model to enhance severe low-light images, as 
shown in eq.23. This enhanced model provides better filtering 
of the illuminating layer image, denoted as I(x,y). Each model 
has its own suitable application in mechanical diagnosis, and 
selecting the appropriate model for image enhancement yields 
different effects. For instance, in low-light environments and 
mechanical crack or fault diagnosis, the chosen model produces 
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superior outcomes. In a separate study, Li et al.49 employed a 
fast Deriche filter to improve the multi-scale Retinex method. 
They successfully applied this technology to contour extraction 
in diamond roller machines, achieving high precision in contour 
measurement.

where τ is the lower limit of reflectivity. λ represents 
the regularization coefficient. α and β Is the fractional order 
parameter contained in the interval .

The Retinex model is extensively utilized in natural 
image processing. Due to its diverse array of models, it yields 
beneficial effects in enhancing image details and reducing image 
noise. This precisely aligns with the requirements of mechanical 
equipment diagnosis. The Retinex model offers superior 
processing capabilities for color images, which encompass more 
information compared to grayscale images. In fault diagnosis, a 
higher quantity of information translates to a greater number of 
features, which also yields advantages.

Image feature enhancement based on gray level 
transformation

In pixel processing, grayscale transformation is a common 
method used for image enhancement in grayscale image 
processing. Each pixel in the grayscale image has a value ranging 
from 0 to 255, with different values corresponding to different 
levels of grayscale. In the context of mechanical diagnosis, image 
processing serves to facilitate feature extraction, and therefore, 
grayscale transformation or normalization can aid in subsequent 
calculations. Additionally, this method helps to mitigate the 
influence of illumination and background on fault feature 
extraction50. Grayscale transformation involves altering the gray 
value of the original image. For instance, in bearing diagnosis, 
Kapla et al.51 utilize grayscale image conversion to extract 
features. Similarly, Xiao et al.52 utilize gray image conversion 
to diagnose fan faults. The accuracy of image processing using 
a convolutional neural network has been observed to be close 
to 100%. Sun et al. analyze the SDP image after bearing signal 
conversion, employing grayscale and binarization processing. It 
is noted that this grayscale transformation method significantly 
reduces subsequent calculations53. Grayscale transformation is 
commonly categorized into three types: linear transformation, 
piecewise linear transformation, and nonlinear transformation. 
The formula for linear transformation is as follows:

Where f(x,y) is the pixel gray value of the original image in 
row x and column y, g(x,y) is the pixel gray value of the output 
image in row x and column, a is the minimum gray value of 
the original image, b is the maximum gray value of the original 
image, c is the minimum gray value of the output image, and 
d is the maximum gray value of the output image. In addition, 
the common linear transformation is image flipping. Within the 
range of [0, L - 1] gray level, the image flipping formula is as 
follows:

Where L represents the maximum gray value of the pixel.

Linear transformation alters the contrast of an image by 
adjusting the range of gray values in the output. The piecewise 

linear transformation partitions the image into distinct gray areas, 
enabling the transformation of each individual area. Fig. 7(a) 
illustrates the transformation relationship of the image through 
the piecewise function. The input image f(x,y) can be mapped 
to g(x,y) after undergoing the piecewise linear transformation. 
The figure demonstrates the possibility of transforming any 
grayscale range by manipulating the number of inflection points 
and the slope of the line.

Where N is the maximum gray value of the enhanced image, 
and M is the maximum gray value of the original image.

Figure 7: Principle diagram of nonlinear grayscale transformation

Linear transformation involves scaling the value of each 
pixel in the image. Consequently, linear transformation 
affects the entire gray range of the image in a linear manner. 
Nonlinear transformation involves mapping a nonlinear 
relationship between the output and input gray values. Nonlinear 
transformation can alter different gray scale ranges to varying 
degrees. For instance, the logarithmic transformation can be 
represented by the following formula:

where  is a constant. f(x,y) represents the pixel value of 
the original image, and g(x,y) represents the pixel value of the 
converted image.

Fig. 7(b) illustrates the suitability of performing a 
logarithmic conversion on the image’s grayscale. The curve of 
the logarithmic function reveals that the pixel’s gray value can be 
mapped to a wider gray value range in the middle. Exponential 
transformation is another type of nonlinear transformation 
that involves modifying the pixel values of the original image 
using the exponential function. The formula for exponential 
transformation can be expressed as:

Where f(x,y) represents the pixel value at (x,y). γ represents 
the order.

In the exponential function image, a γ value of 1 corresponds 
to a linear transformation. Increasing the γ value results in 
a decrease in the input pixel’s gray value, compression of the 
low grayscale areas, stretching of the high grayscale areas, 
enhancement of the low grayscale values, and a brighter image. 
When the γ value is less than 1, the opposite occurs. The former 
method processes each pixel individually, while histogram 
enhancement transforms the same gray value uniformly. The 
histogram is divided into gray, gradient, and optical flow 
histograms, providing insight into the image’s brightness 
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characteristics. The horizontal axis ranges from 0 to 255, 
representing the gray values, while the vertical axis represents 
the frequency or count of those gray values in the image. A 
larger proportion of low gray values indicates a darker image. 
Common image enhancement methods based on histograms 
include histogram equalization and histogram specification. 
The transformation equation for histogram-based image 
enhancement is shown in eq. 29.

Where σf is the standard deviation of the input image, m is 
the local mean, and E, K0, K1 and K2 are the specified parameters.

According to the formula provided, the image can be 
enhanced through histogram manipulation, allowing for a 
comparison between local and global contrast. This comparison 
enables the adjustment of local pixel values by a factor of E. 
Unlike the simple function transformation method, histogram 
enhancement takes into consideration all images and local 
images simultaneously, processing similar pixels based on the 
regions that require improvement. Li et al.54 utilized a histogram 
equalization algorithm to enhance image contrast, resulting in 
higher recognition accuracy in diagnosing faults of rotating 
machinery. Hameed et al.55 applied a histogram-based approach 
to extract fault features in diagnosing planetary gearbox 
faults. Different fault types exhibit discernible differences, 
which can be visualized and used as a basis for classification 
through histograms. Joshuva et al.56 utilized histograms to 
extract vibration signal features, achieving enhanced accuracy 
in diagnosing generator blade faults and improving the overall 
diagnostic efficiency. Yang et al.57 investigated histogram coding 
strategies for detecting mechanical speed changes, specifically 
in analyzing vibration signals, and confirmed its excellent 
performance through simulations and real-world signals. Dias 
et al.58 proposed the use of a directional gradient histogram to 
detect broken bars in motor rotors, which effectively extracts 
features that facilitate better classification. Song et al. employed 
a histogram-based approach, coupled with Principal Component 
Analysis, to diagnose blower faults, enabling swift and 
efficient extraction of signals across any probability density. 
Additionally, histograms were used to replace traditional 
parameters and generate new features through the integration 
of histograms and genetic programming, leading to improved 
diagnostic sensitivity59, 60. Sun et al.61 employed the histogram of 
directional gradient features to enhance the ability of extracting 
fault features, mitigating the impact of limited grayscale and 
texture on feature extraction. Tayyab et al.62 utilized Histograms 
of Oriented Grains (HOG) and Local Binary Patterns (LBP) to 
extract rolling bearing features from vibration images, which 
can be manually generated. Ding et al.63, 64 utilized histograms 
to establish the relationship between bearing time-frequency 
images and time-frequency manifolds, demonstrating reliable 
performance in handling continuous noise. Chen et al.65 
represented different gear failures through histograms, which 
effectively depict the distinctions between various feature 
parameters.

Image feature enhancement based on convolutional neural 
network

In recent years, convolutional network technology has 
significantly advanced and found widespread applications in 
image processing. The powerful learning capabilities of neural 

networks have greatly contributed to image classification. In 
the field of fault diagnosis, such as crack detection, the primary 
approach is to extract meaningful features automatically from 
the image in order to eliminate interference from noise66. 
Consequently, CNN-based image feature extraction methods 
resemble filtering methods, seeking to filter out image noise and 
emphasize useful information. With the progress of machine 
vision, deep learning has made inroads into mechanical fault 
diagnosis owing to its ability to address highly complex problems. 
Converting a signal into a two-dimensional image for intuitive 
analysis and employing CNN-based diagnosis extraction 
outperforms traditional methods. Wang et al. transformed the 
vibration signal of a bearing into a two-dimensional RGB image, 
utilized a CNN-based convolutional network to extract image 
features, and subsequently diagnosed the bearing fault67.

In machine image processing, images are commonly 
represented as matrices, with each pixel corresponding to a 
numerical value in the matrix. In convolutional neural networks, 
by computing and classifying this numerical matrix, the network 
achieves the desired denoising and classification effects. A typical 
convolutional neural network structure comprises several layers, 
including the convolution layer, activation function, pooling 
layer, fully connected layer, and output layer, as shown in fig. 
8. Each layer serves a distinct purpose. The convolution layer 
is responsible for extracting features from images. In contrast 
to traditional filtering methods, the convolution layers leverage 
different objective functions to achieve diverse image feature 
extraction outcomes. Multiple pooling layers compress image 
data, thereby reducing network parameters. The fully connected 
layer is responsible for image classification. Hence, modifying 
the structure of the convolutional network can yield different 
image processing outcomes.

Figure 8: Convolution neural network flow chart

To address image noise, Quan et al.68 enhanced the 
convolutional neural network by incorporating complex 
transformations, resulting in improved denoising effectiveness. 
The adoption of complex neural networks stems from their ability 
to express image features more effectively. As the image matrix 
resides within a two-dimensional space, the complex domain 
provides superior representation compared to the real field. 
Two-dimensional complex filters also outperform real filters. 
The complex domain convolutional denoising network structure 
is presented in fig. 9. Leveraging multi-layer convolution, the 
nonlinear activation function ReLU, and residual blocks, the 
network achieves image denoising. The convolution method 
no longer revolves around real number field convolution, but 
complex number field convolution, as formulated in eq.30. The 
rectified linear element function in the complex number field is 
depicted in eq.31, and the complex field normalization module 
is illustrated in eq.32.
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where R is the real part, S is the imaginary part, and ReBN is 
the standard batch normalization with real-valued input.

Figure 9: Image Enhancement of convolution Neural Network 
based on complex Domain

Applying convolution network transformations in a complex 
domain yields favorable denoising results, particularly in the 
removal of additive white Gaussian noise. Correspondingly, 
various improved convolutional neural network schemes have 
been devised to cater to diverse image processing objectives, as 
summarized in Table 3.

Table 3. Image enhancement method based on improved 
convolutional neural network
 No   Method  Advantage    Ref 

1

 A multi-scale information fusion  
layer is added in front of the convo-
 lution layer of the traditional CNN
 to form a 2D multi-scale cascade
 CNN

 Adapt to frequent  
 changes in speed and
load bearing diagno-
                                                                                                                    .sis

69

2
The SE-CNN is formed by com-  
bining the channel attention mecha-
                                                                              .nism of SE network and CNN

 Good generalization  
                                                              .ability and stability

70

3
Fault diagnosis task and signal de- 
 noting task are integrated into CNN
                                                            .to form JL-CNN

 Good bearing fault  
diagnosis ability un-
                                                                                             .der strong noise

71

4
Combining the generalization abil- 
ity of CNN and support vector ma-
              .chine, CNN-SVM is formed

 Bearing diagnosis  
 takes less time and
  .has high accuracy

72

5
 CGAN-2-D-CNN is formed by  
 combining conditional generative
                                              .adaptive network and CNN

 The number of data  
 samples for bearing
                                                                                        .diagnosis is reduced

73

In summary, grayscale images are extensively employed 
in fault diagnosis due to their ease of calculation and analysis. 
In fault diagnosis, the grayscale distribution of an image can 
be altered through grayscale transformation and histogram 
techniques, which enhance the original image information 
and improve its visual clarity. The selection of an appropriate 
grayscale transformation method effectively accentuates the 
image’s feature information, thereby facilitating fault diagnosis 
in rotating machinery.

Image feature enhancement based on fusion

Multi-spectral image fusion is a widely-used approach in 
mechanical fault diagnosis. For instance, in power equipment, 
thermal defects contribute to as much as 90% of equipment 
failures. Hence, by merging infrared and visible images, it 
is possible to determine the location of faults, estimate the 
remaining lifespan, and diagnose the fault type. Consequently, 
image fusion plays a crucial role in the field of fault diagnosis, 

and the classification of fusion methods is illustrated in fig. 10.

Figure 10: Image fusion method

Prior to image fusion, it is essential to register the images 
in order to facilitate the fusion of regions containing similar 
information. This process requires the extraction of image 
feature areas or the measurement of pixel intensity. Yang et al.74 
classify and match the edge feature points of power equipment 
to accomplish the fusion of multi-spectral images. To establish 
a standard image library, both the infrared and visible images 
of normal equipment are utilized. The global edge contour 
correlation coefficient between the standard infrared image 
and the infrared detection image is calculated using normalized 
cross correlation, resulting in the creation of a template image. 
Subsequently, the improved speeded-up robust features method 
is employed for the secondary recognition of image features, 
aiming to eliminate background noise and interference from 
other equipment components. The secondary recognition 
method primarily relies on comparing Euclidean distances and 
applying the minimum principle of the cost function to extract 
the region for image fusion.

In fault diagnosis, various types of images are used for data 
conversion, promoting the development of multi-image fusion. 
Recursive plots, due to their symmetry, often contain redundant 
information (eq. 33). Zhang et al.75 employed this method to 
fuse various recursive plots. The recursive plot is based on its 
diagonal symmetry property. The long sequence signal is divided 
into two parts, and each group is converted into a recursive plot. 
Image fusion is achieved by combining two diagonal matrices 
(fig. 11). This method mitigates information redundancy and 
effectively highlights the features of long sequence signals. Nath 
et al.76 also utilized a recursive plot for fusion, where they fused 
three recursive plots into a three-dimensional image. This image 
fusion method facilitates the analysis of time series. Kim et al. 
77 similarly employed three images for fusion, but not by simply 
superimposing them. They utilized the principle of three RGB 
channels to convert the images into channel values, generating 
color images. Experimental results have shown the method’s 
good classification accuracy for signals. In the image fusion 
process, Ying et al.78 introduced the method of interpolation 
compensation error to enhance the quality of incompletely 
registered images. Firstly, spatial sampling and spectral mapping 
are employed, followed by the use of LR-HIS to generate 
HR-MSI. The edge difference (ED) is calculated for LR and 
HR images with varying pixel values. A smaller ED indicates a 
better image alignment (eq. 34).

 

Where RPi,j represents the recursive pixel value.  
represents the ith state of phase space.  Represents a function 
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of thresholding a matrix. ε is the threshold. m is the number 
of points in each state of the phase space. represents the total 
number of states.

Figure 11: Recursive plot diagonal fusion

Where Ic and Ib are clear images and fuzzy images 
respectively, EC and Eb are edges of clear images and fuzzy 
images respectively. The calculation expression of E is shown 
in eq.35.

Where (x,y) is the location coordinate of the pixel, j is the 
image band.

The different images are then registered using the minimum 
normalized edge difference, as described by the calculation 
method in eq.36. In order to mitigate the problem of local 
optimization, the registration accuracy and speed are improved 
by employing the edge image pyramid. In the image fusion 
process, the spectral basis matrix is computed and the coefficient 
matrix is solved to fuse the images, as demonstrated in eq.37.

The different images are then registered using the minimum 
normalized edge difference, as described by the calculation 
method in eq.36. In order to mitigate the problem of local 
optimization, the registration accuracy and speed are improved 
by employing the edge image pyramid. In the image fusion 
process, the spectral basis matrix is computed and the coefficient 
matrix is solved to fuse the images, as demonstrated in eq.37.

 Z = VE     (37)

Where V represents spectral basis matrix, E as the coefficient 
matrix.

Where S is the spatial mapping matrix E stands for 
coefficient matrix. V denotes the spectral basis matrix. R and B 
are parameters determined by the sensor.

The fusion of images effectively addresses the registration 
problem and enhances the overall image quality. In fault 
diagnosis, this lays a solid foundation for subsequent image 
processing. The accuracy of image registration significantly 
impacts the quality of image fusion, which enables superior 
display of signal information across various dimensions. 

Increased feature information in fault diagnosis leads to improved 
classification accuracy. The image fusion method combines 
diverse image features, effectively merging the features from 
different images into a single image. This significantly simplifies 
the computational complexity. Additionally, the image fusion 
algorithm offers a novel avenue for enhancing image features to 
a certain extent.

Image feature enhancement based on segmentation

Image segmentation technology has found widespread use 
in various domains, including natural science, medicine, remote 
sensing, and industrial applications79. It is particularly valuable 
when the feature information is localized within specific areas of 
an image, as it allows for the extraction and highlighting of these 
feature regions. By employing image segmentation, the volume 
of image data can be reduced, which facilitates subsequent 
higher-level processing and analysis. The accuracy of image 
segmentation directly impacts the quality of the subsequent 
processing stage, making it a focal point of research. Currently, 
the primary methods for image segmentation include threshold-
based, region-based, edge-based, and super-pixel segmentation 
techniques.

Image segmentation is a method of data feature 
extraction that can be applied to image data, represented as a 
two-dimensional matrix. Song et al.80 utilized a data conversion 
technique to extract fault features from a rotating motor. They 
employed an unsupervised sequence segmentation approach 
based on a convolutional neural network to highlight signal 
features, enabling early fault detection. Similarly, Yu et al.81 
utilized machine vision image processing techniques to detect 
bearing faults. They employed adaptive threshold segmentation 
and the Canny edge detection method to accurately segment 
bearing surface defects. This approach reduces noise influence, 
shortens diagnosis time, and enhances detection accuracy 
through contrast enhancement. Yun et al.82 proposed a data 
enhancement method for diagnosing planetary bearings. They 
applied overlapping segmentation methods to enhance vibration 
data and incorporated dictionary learning to improve fault 
classification accuracy. Experimental results demonstrated 
high anti-noise capability. Zhao et al.83 reshaped signals into 
segmentation matrices using a segmentation method. They 
extracted feature frequencies by stacking them into three-
stage tensors and conducted wind turbine bearing analysis. 
This method effectively extracts fault features and separates 
fault sources. Furthermore, Zhao et al. 84 proposed an adaptive 
defect region segmentation algorithm for detecting defects in 
universal joint bearings. This algorithm accurately segments the 
defect area and exhibits good recognition accuracy in dealing 
with bearing surface defects. It is also applicable in practice 
due to its processing speed. Moreover, Khodja85 utilized a time-
moving segmentation window to segment temporal vibration 
signals, enabling bearing fault diagnosis at different speeds. The 
proposed method demonstrates high accuracy and robustness 
even in the presence of noise.

Currently, there is a lack of a specific theoretical framework 
to guide the selection of appropriate methods, resulting in 
the reliance on methods tailored to specific image types for 
more effective processing. Nevertheless, image segmentation 
undeniably plays a crucial role in feature extraction. It enables the 
removal of redundant information from images and emphasizes 
their distinctive features. Various image segmentation methods 
yield different outcomes, even at the same processing speed. 
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In fault diagnosis, there is a need to strike a balance between 
accuracy and speed. Enhancing processing speed is also a crucial 
aspect of advancing image segmentation technology.

Future Trends and Remarks
The analysis and synthesis of existing literature lead to 

the following conclusions: A majority of the literature focuses 
on image-based fault diagnosis methods, which have been 
extensively utilized in fault diagnosis applications. Filtering-
based image enhancement methods effectively reduce image 
noise. Template-based methods enhance image features through 
various means, such as texture feature enhancement, smooth 
image generation, and filtering. Gray-based image enhancement 
methods modify the gray distribution of the image to highlight 
feature information using different grayscale conversion 
approaches. Convolutional neural network-based image 
enhancement methods demonstrate a diverse range of techniques. 
Image fusion-based enhancement methods combine information 
from multiple images to improve overall image quality. Image 
segmentation techniques are employed to isolate specific areas 
of an image, making it possible to select fault regions.

Image enhancement methods play a vital role in image-
based fault diagnosis, offering various techniques suitable for 
different diagnostic purposes. To further enhance the accuracy 
and efficiency of diagnosis, the following areas warrant further 
investigation:

Fusion of multiple image enhancement techniques is 
essential in the field of fault diagnosis. Image enhancement 
techniques often have both benefits and drawbacks. After 
image processing, the relevant information is typically filtered 
or masked. However, using various enhancement methods can 
affect the speed of image processing. Effectively extracting 
useful information from data remains an essential aspect of fault 
diagnosis.

Enhancing the efficiency of image enhancement is crucial in 
reducing the complexity of image processing. Images contain 
a vast amount of information, which often leads to intricate 
processing requirements. A key future objective is to improve 
the speed of image processing in fault diagnosis, as this will 
significantly reduce diagnosis time.

Investigate a novel treatment approach. Typically, fault 
diagnosis relies on simplistic image processing methods, which 
may not yield optimal outcomes. Thus, enhancing both the 
accuracy and efficiency of fault diagnosis requires a deeper 
understanding of how images impact the process.

Within the realm of image-based fault diagnosis, numerous 
image processing methods exist, making it challenging to 
determine the most suitable one. Since the effects of various 
methods vary, it is crucial to explore the selection of appropriate 
processing methods based on different image types.

Future research opportunities can be explored in the following 
areas: enhancing the accuracy of diagnosis by highlighting fault-
prone features through image enhancement, and advancing the 
development of fast and efficient image processing methods to 
address the evolving requirements of fault diagnosis. High-speed 
image processing enables rapid data processing, enhanced fault 
information extraction, and increased throughput in detection 
data.

In the field of rotating machinery, fault diagnosis outcomes 

are influenced by factors such as rotating frequency and load. 
Investigating the application of images to address fault diagnosis 
at various frequencies represents a novel research direction. 
Noise often disrupts signals in the diagnosis of rotating 
machinery, masking crucial fault features and complicating the 
diagnostic process. Image feature enhancement can mitigate the 
impact of strong noise conditions, offering practical research 
significance.

Purposeful image enhancement is necessary to effectively 
highlight variations between different faults. This method 
can be extended for more complex fault diagnosis scenarios. 
Furthermore, incorporating cross-domain knowledge from other 
image processing methods can enhance the diagnostic capacity 
of rotating machinery equipment by integrating new image 
processing technologies.

Conclusion
Image feature enhancement is a useful approach in fault 

diagnosis with images. Therefore, this paper aims to elucidate 
the image feature extraction method in the domain of rotating 
machinery. This review summarizes various image enhancement 
methods that primarily focus on diagnosing faults in rotating 
machinery. Additionally, this paper presents novel approaches 
to image processing, specifically filtering, templates, and 
grayscale transformation. Furthermore, the paper provides a 
brief introduction to image fusion and image segmentation 
methods. Finally, the challenges and difficulties associated with 
image feature enhancement techniques in fault diagnosis are 
discussed. Considering the characteristics of rotating machinery, 
potential research directions for the future are proposed. The 
paper concludes by summarizing the application of image 
feature enhancement to rotating machinery and highlighting 
the effectiveness of using images for fault signal classification. 
Overall, this article serves as a reference for further research and 
development in fault diagnosis for rotating machinery.
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