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 A B S T R A C T 
As the global demand for oil and gas continue to increase the focus of operators on offshore oil and gas production and 

by extension, put a huge strain on the continued reliability of offshore assets, due to aging challenges, the need to an adequate 
maintenance of aging assets has become ever so important. Extensive review of existing literature and industrial application of 
maintenance techniques revealed a huge gap in the application of machine learning predictive maintenance in detecting the 
failure rate of major offshore assets. Most importantly, pipelines, which not only serve as production tools, but also as separation 
and transportation purpose have been largely under researched, particularly with relation to corrosion attack. Therefore, this 
research aimed to analysis the prediction of corrosion rate in offshore pipelines, by answering research questions relating to the 
adequacy of applying machine learning to predicting corrosion rates, identifying the top features-based Pearson’s Correlation 
Coefficient and their P-Values and identifying the best performing models for corrosion rate prediction, for the whole features, 
and equally applied on selected features. The base line traditional regression model was compared to more advanced Gradient 
Boosting Regressor, XGBoost Regressor and AdaBoost Regressor. Based on acquired results, Gradient Boosting Regressor 
performing best, followed by XGBoost Regressor and AdaBoost Regressor, while the least performance was from the traditional 
regression model. This result was the same for models trained on all the features and on selected features.

Keywords: Machine Learning, AI, Artificial Intelligence, Digital Twin Technology, Maintenance, Offshore, Oil and Gas, Assets, 
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Section 1
Introduction
Background 

The continued demand and the resulting obligations to 
continue produce oil and gas, has brought about increased 
offshore activities (Chen et al. 2014); Chukwunonso (2015). 
Hence, challenges emanating from asset ageing (due to the 
continued usage) presents significant issues to the offshore 
sector of the petroleum industry. In effect, significant number of 
offshore facilities are veering towards (or have surpassed) their 

nominal design life (Clausard 2006b; Ersdal  et al. 2011). With 
the continued global reliance on oil and gas, numerous offshore 
assets are expected to be utilised beyond their design lives in 
the coming years. Therefore, asset life planning have become 
progressively more crucial, encouraging the need for resource 
efficient solutions that eases burdens on all stakeholders (Hudson 
2010).  

As assets approach their end of design life, significant risks 
persistently endanger its safety and reliability (Shukla and Karki 
2016), as uninterrupted exposure to conditions of stress, as well 
as environmental effects will result to degradation. Ageing of 
assets can be profiled with  bathtub curve as per Figure 1 below.

https://urfpublishers.com/journal/integrated-health
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Figure 1: Bathtub Curve Representing Ageing (Wintle 2010)

Presented here-under is a coincise depiction of the different 
varying phases of asset age in relation to the severity of age 
related issues, as described by Wintle et al. (2012).

1. Inetegrity challenges noted at asset infancy stage are generally 
rectified through first comprehension investigations. 

2. At maturity stage, assets are generally characterised low and 
fairly steady fault rate, which requires little or no care. 

3. Assets at ageing stage, are anticipated to display increasing 
rate of failure, which generally wears away the systems 
design life (calling for a life extension strategy). To evaluate 
the remaining useful life at this stage, it is imperative that the 
rate and extent of failure is quantitatively established.

4. At the terminal stage, attention is largely focused on safetu 
as the asset is severely damaged. Although, asset will be 
continually managed, as long as reasonably possible.

Ageing

According to Ersdal  et al. (2011), ageing describes the 
numerous circumstances that generally ensues, when structures, 
equipment and systems gets older. However, according to Gupta 
and Patel (2010), “Ageing is not about how old your equipment 
is, it is about what you know about its condition, and how that 
is changing over time”. This definition was corroborated by 
Horrocks et al. (2010), who defined ageing as the deterioration 
or impairment of a system, usually but not always related to the 
time of usage. 

While the service age of an asset is a major element of its 
output efficiency, it does not always decide the inadequacy of 
the asset. That a system is old does not infer that its efficiency 
has declined or that the asset is broken. Fundamentally, the level 
of aging of an asset predominantly centres on both the service 
conditions and the material sensitivity to those conditions (Novak  
and Podest 1987). These conditions are classified in respect 
to their technical and non-technical or external characteristics 
(Ersdal  et al. 2011), as shown in the Table 1 below:

Table 1: Asset Ageing Related Issues (Ersdal  et al. 2011)

The technical aspects can be time-dependent and in other 
cases, ageing accumulated over time. The non-technical 
attributes can be in form of obsolescence of the equipment, or 
as a result of organizational challenes. This research work will 
focus on the time-dependent, technical aspect of aging.

Problem Statement

The vast majority of assets in the offshore oil and gas industry 
exceeding their design life of between 20 -25 years (Clausard 
2006a; Animah and Shafiee 2017). This trend is anticipated to 
increase with the continued rise in the unrelenting desire towards 
oil and gas exploration and production (thereby increasing 
offshore activities) (Chukwunonso 2015). Additionally, the 
decrease in platform decommissioning and installations of new 
offshore structures, due to the enormous financial implication, 
has necessitated the continued use of assets beyond the service 
life (Chukwunonso 2015).

On a Global scale, about 30% of an estimated total of 6700 
platforms have been operated for over 20 years (Patterson 
2013), a greater part of this number have already surpassed their 
original design life expectancy. Also, majority of the 5000 fixed 
offshore production platforms, and about 40% of the world’s 
mobile drilling platforms have operated well above their planned 
service life (Paik and Melchers 2008). In the United Kingdom, 
about half of the offshore have functioned further than their 
service life (Animah and Shafiee 2017). 

Ageing of offshore oil and gas assets have adverse personnel, 
environmental, economic, and operational effect on the industry. 
According to the European Union Major Accident Reporting 
System (MARS), for a 26 years period from 1980, a total of 
96 major accident was reported due to ageing (Gupta and Patel 
2010). Additionally, in the EU hazardous industry, roughly 60% 
of major hazard loss of containment incidents centred on asset 
integrity, 50% of which are ageing related (Duncan 2012) and 
(Chukwunonso 2015). Furthermore, ageing plant was reported 
to be responsible for up to 28% of loss of containment incidences 
in Europe (Candreva and Houari  2013). 

The financial impact of failures because of aging assets can 
be equally far reaching. Due to the dramatic increase in the 
decommissioning of aging offshore assets, and about an excess 
of 600 projects predicted for  disposal globally, by the end of 
the year 2021, with 2,000 more offshore projects expected to 
be decommissioned between 2021 and 2040 (IHS Markit 2016), 
resulting in significant rise in expenditures. According to (World 
Oil 2016), spending on decommissioning projects is expected to 
increase from approximately $2.4 billion in 2015, to $13 billion-
per-year by 2040, or a whooping increase of 540%.

Given the current outlook of the global oil and gas industry 
and global dependence of oil and as a unique source of energy, 
the oil and gas industry require a drastic implementation of an 
improved maintenance structure for the management of aging 
offshore assets. Therefore, the aims and objective, as well the 
proposed methodology of this research, which aims to deploy 
digital twin technology towards solving prevalent aging 
challenges in the offshore, is as presented below.

Rationale for the Research

As stated above, continuous dependent on oil and gas as the 
premium and most viable source of crude oil and the continue 
reliant and focus of operators on the offshore, has placed a 
huge strain on the usage of offshore assets. While organisations 
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continue to avoid decommissioning due to the associated costs, 
the impact of damages from aging related occurrences has 
increased the need for a deliberate approach to maintaining 
assets beyond the design life. Therefore, the motivation for 
carrying out this study are as highlighted below

1. Offshore assets are getting used beyond services life, due to 
continued demand and global dependency on crude oil and 
the cheapest source of energy.

2. Operators always try to avoid asset decommissioning due to 
its associated costs, this means that assets have to be used 
beyond the design life

3. While offshore aging assets have received vast attentions 
recently, only few researchers have focused on key failure 
modes like corrosion, with majority of focus on condition 
monitoring

4. The advent of digital twin and artificial intelligence has 
necessitated the need for an intelligent and smart approach 
to maintaining assets.

Aims 

This aims of this research is to evaluate the evaluate the 
application of digital twin technology and artificial intelligence 
on the maintenance of aging offshore assets and develop a 
machine learning approach to maintaining them accordingly. To 
achieve this, detailed analysis will be carried out using different 
machine learning models and comparing their performance on 
the utilised dataset. Therefore, the objectives of this research are 
as follows:

1. To extensively explore current methodologies used in the 
managing aging and life extension of assets in the offshore. 
Additionally, limitations in the current methods will be 
identified and a suitable plan of corrective actions will be 
prescribed.

2. To develop a machine learning algorithm for predicting rate 
of failure of an asset, with specific focus on the prediction of 
corrosion rate in offshore pipelines

3. To evaluate the relevant machine learning models used and 
determine the best performing models.

Research Scope

With the vast nature of the offshore oil and gas industry and 
variety of assets in use, as well as abundance of machine learning 
approaches to solving aging challenges, solving aging problems, 
with an open scope is almost impossible in an MSc dissertation. 
Therefore, the scope of this research is limited to the prediction 
of corrosion rate in offshore pipelines.

Research Questions

Traditionally, maintenance of assets in the offshore is 
mainly knowledge based. This current approach has proven to 
be ineffective with the amount accidents, financial and human 
losses attributed to aging related asset failure. This has raised 
more questions than answers, ones that this research aims to 
address:

1. What is the effectiveness of the current maintenance methods 
and what are the associated perils?

2. What are the key conditions and contributing factors 
(Features) towards corrosion in the offshore environment?

3. Which machine learning model is most effective in predicting 

corrosion rates in offshore pipelines?

4. Can digital twin and machine learning be deployed towards 
improving the current standards in asset maintenance?

Section 2

Literature Review
Maintenance and Asset Integrity Management 

Over time, maintenance has been an ever-evolving concept, 
with varying interpretation of its ideas. In the past, maintenance 
practices refers only to actions associated with equipment repair 
after breakdown (Onawoga and Akinyemi 2010). However, a 
more modern view have majority of researchers and authors in 
agreement, to define maintenance as a “set of activities required 
to keep physical assets in the desired operating condition or 
to restore them to this condition” (Pintelon  and Parodi-Herz 
2008). Maintenance management on the other hand, refers to 
the integration of all technical, administrative and supervisory 
activities, intended to monitor, control and retain an item, 
machine or process in, or restore it to a state, in which it can 
perform a required function (Achilla 2015). 

While asset maintenance management itself is an old and 
mature discipline, elements like competition, productivity, 
customers, and technology has forced a continuous evolution 
of the practice. Evidently, increasing international industrial 
demands continues to threaten business survival, requiring that 
industries sustain full productive capacities while minimizing 
the required capital investment. From the maintenance 
perspective, this means exploiting asset reliability, by extending 
each individual component’s life (ETI et al. 2006).

Over time industrial maintenance and asset management has 
evolved from the ancient regressive (delayed or no reaction) 
approach, through to the modern strategic method. This was best 
illustrated in Du Pont Corporation’s study on the effectiveness of 
the maintenance operations, which identified the characteristics 
of the different evolutional stages of maintenance operations, as 
shown below. 

Figure 2: DuPont Stable Domain Model (Ledet 2016).

Due to increasing demands for improved asset management 
practices (Misra 2008),  quest to eliminate/reduce asset downtime 
(Ledet 2016), demands for higher production performance 
(Blann 1999), the need for employee involvement (Thomas 
2000) and continued demand for continuous improvement 
(Blann 1997), the field of asset management and maintenance 
has experienced immense growth and evolution in recent times. 
From the regressive (little or no reaction to failure) approach 
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(Ledet 2016), to the reactive methods where assets are only 
fixed after breakdown is experienced (Misra 2008; Onawoga 
and Akinyemi 2010). Further improvements brought about the 
planned maintenance approach where equipment is consistently 
examined and repaired to prevent breakdowns from occurring 
(Ledet 2016). Planned maintenance is typically divided into 
the Scheduled (Preventive Maintenance) and Condition-based 
maintenance (Predictive Maintenance).

Demands for higher production performance led to the 
movement to the more advanced Reliability Domain. Typically, 
Reliability centred maintenance (RCM) and total productive 
maintenance (TPM) are the main types of maintenance at the 
reliability domain (characterised by proactive maintenance 
methods (Blann 1999)) (ETI et al. 2006). According to (ETI et 
al. 2006), and (Sullivan et al. 2010), RCM can be defined as “a 
systematic proactive approach, used to define the maintenance 
needs of an asset in its functional context”. With RCM, the 
system purposes, their failure mechanisms, and the criticality 
are cautiously investigated in order to deliver a decent footing 
for the maintenance program (Milje 2011). 

The TPM is an asset management methodology that permits 
incessant and swift improvement of production processes, through 
the use of employee involvement and employee empowerment 
and closed-loop measurement of result (Thomas 2000). It is 
a profit focused, zero failure approach towards maintenance 
management, aimed at applying planned maintenance strategies 
in identifying and repairing equipment before deterioration 
arises (Achilla 2015).

The final domain is classified as a world class maintenance 
phase. The behavior required for world class performance 
domain is believed to be “Organizational Learning” as shown 
in the DuPont domain model. Although currently classified as 
the best maintenance methodologies (Blann 1997), TPM and/
or RCM are not the final frontier, as even better performing 
maintenance approaches will continue to come up, through 
continuous improvement (Blann 1999). The concept of 
continuous improvement is seen as a journey, not the endpoint. 
To this end, researchers have continued to focus of methods 
of further improving the current “best practices” (through the 
incorporation of Digital Technologies) in order continuously 
minimise the challenges faced by operators as offshore assets 
approach the end of their useful lives.

Maintenance of Ageing Assets

Age creates a wealth of challenges for offshore operators. 
As assets ages, operators require a wide-ranging maintenance 
plan, to prolong the lifespan and efficiency of the asset, as well 
as to avert any failure that might lead to a major incident (halting 
production and putting workers at risk of serious injury). 
Significantly, as often addressed in books, articles and journals, 
an effective maintenance campaign involves putting in place 
a fully planned, coordinated and implemented maintenance 
strategy (ETI et al. 2006; Achilla 2015). It is usually not a case 
of sudden, unorganised actions. 

Currently, very few studies have focused on maintenance 
decision-making beyond the original design life (Saxena et al. 
2008; Tiddens et al. 2015), despite clear evidence alertness on 
the challenges inherent in ageing and life extension in recent 
research works (Saxena et al. 2008). Unfortunately, methods and 
quality of implementation of asset life extension frameworks 
remains a huge challenge facing the offshore oil and gas industry 
(Chukwunonso 2015; Animah and Shafiee 2018). 

Several studies have been initiated on this topic. Incidentally, 
bulk of this has focused on the physical conditions and structural 
aspects of asset ageing management. Particularly, (Baker  and 
Descamps 1999; Hörnlund et al. 2008) and (Hörnlund et al. 
2011) undertook studies on the material related risk in ageing of 
offshore assets. Additionally, several other researchers focussed 
on structural integrity of offshore structures and installations 
(Ersdal 2005), (Sørensen and Ersdal 2008) , (Ersdal et al. 2008)
jlC and (Galbraith and Sharp 2007b), while (Hart et al. 2009) 
worked extensively on the impact of ageing safety critical 
element in offshore. Furthermore, (Galbraith and Sharp 2007a) 
carried out a study on recommendations for design life extension 
regulations for ageing offshore production facilities. 

Unfortunately, virtually all the aforementioned researchers 
focused on investigating the physical condition and structural 
integrity of assets, using inspection techniques (condition 
monitoring) and engineering analysis methods (Ersdal 2005; 
Galbraith and Sharp 2007b; Sørensen and Ersdal 2008; Hart 
et al. 2009; Ersdal  et al. 2011). Unquestionably, developing a 
maintenance plan for ageing assets, demands a careful review 
of the design (of the asset) and projections of impending 
damage mechanisms, (including fatigue and corrosion) (Paik 
and Melchers 2008). However, according to (Hudson 2010), 
integrity management of ageing assets depends not only on the 
physical condition of the system, but also on the procedures 
adopted in dealing with the growing risk of failure. It is pretty 
much essential to strike an accurate equilibrium between 
asset management techniques and inspection, for improved 
management of ageing assets. This growth has led to the 
paradigm shift in asset management and monitoring, toward the 
application of digital technology (Animah and Shafiee 2017; 
Animah and Shafiee 2018; Errandonea et al. 2020), which 
aims to predict asset integrity and forecast damage from sensor 
acquired data (Errandonea et al. 2020). 

Digital technology not only present an interesting prospect, 
but also a novel opportunity of developing a strategic (world 
class) solution to maintenance of offshore ageing asset (Bhowmik 
2019). To push the boundaries of innovation and continuous 
improvement, digital technology providers and researchers are 
working on opening up new possibilities in the field of asset 
management through the application of Artificial Intelligence, 
Machine Learning, Advanced Statistics, Internet of Things and 
Digital Twins (Errandonea et al. 2020).

Digital Approach to Asset Life Extension

Developments in computing and information technology have 
greatly increased the potential implementation of digitalisation 
solutions to prevalent industrial challenges. Consequently, 
knowledge extraction from data science has attracted a lot of 
interests from many fields of research in recent years (Provost 
and Fawcett 2013). Artificial Intelligence, Machine Learning, 
Advanced Statistics, Internet of Things and Digital Twins 
and related strategies for optimal data management are good 
examples of such interests. 

In recent times, digitalisation has presented a fundamental 
revolution in our everyday life and the offshore oil and gas 
industry is no exception. Digitisation of maintenance practices 
in the offshore environment has become more feasible with the 
astronomical increase in amount of accessible data (relating 
to aging assets) and the availability of fast paced potential (of 
computing systems) in providing optimum solutions in relation 
the manual analytical methods. According to (Renzi 2019) the 
global oil and gas industry has collected petabytes of data, much 
of which are left unused and unrefined. 
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Digital Twin technology, which is a digital model of a 
physical entity (Liu et al. 2012; El Saddik 2018; White et al. 
2021), utilises the vast available data to integrate internet 
of things, machine learning, artificial intelligence and data 
analytics, to create virtual digital simulation of a physical entity, 
while updating and changing with their physical counterparts 
over time and continuous operation (Luo et al. 2019; White et 
al. 2021), to predict asset performance and conditions (Qi and 
Tao 2018).

Continuous improvement in standards has ensured that 
maintenance and asset management has evolved towards 
the strategic domain as shown in figure 2, with operators and 
researchers developing futuristic view to maintenance (Heng et 
al. 2009). This involves real time, time to failure tracking using 
sensors (Bhowmik 2019) and remaining useful life prediction, 
before failure is experienced (Qian et al. 2017) 

Majority of early application of digital technology in 
maintaining offshore assets involves using specific artificial 
intelligence and machine learning (Tan et al. 2019) techniques 
to predict the reliability of an asset, through the prediction and 
estimation of the probability if failure (Sharma et al. 2017). 
Certain researchers like (Håbrekke et al. 2011; Animah and 
Shafiee 2017; Oliván 2017; Simm 2019; Stetco et al. 2019) 
also, extended the trend further by predicting time to failure and 
useful life of assets.

Similarly, numerous researchers have worked on the 
application of digital twin technology for prognostic analysis 
of offshore oil and gas assets. However, majority of the 
research fell short on two grounds, as some like (Liu et al. 
2012) only considered digital twin application for simulating 
and monitoring asset performance, while others incorporated 
artificial intelligence techniques for prognostic (assessment of 
useful life), largely ignoring the diagnostic (fault detection) 
aspect of asset management and predictive modelling of 
specific failure modes (Sharma et al. 2017; Ochella et al. 2021). 
Although, (Altamiranda et al. 2009) developed a digital twin 
technology for the diagnosis of subsea processing system, the 
research focused only on fault detection and monitoring, and 
failed to include the evaluation of the remaining useful life of 
the asset or prediction of failure rates (prognosis). Additionally, 
the diagnosis technique by (Altamiranda et al. 2009) did not 
consider image recognition, which would have presented a more 
intelligent and accurate fault diagnosis. 

In view of the above, while enormous research time and 
work has been invested in unearthing novel ways of maintaining 
offshore assets, existing research are limited in their application 
of digital twin technology and artificial intelligence in offshore 
asset management. As enumerated above, many attempts to 
proffering solutions to this challenge have fall short in applying 
image recognition technologies in diagnostic analysis of asset 
faults, despite the enormous research outlays in fault and 
condition monitoring. Additionally, as stated in the paragraph 
above, researchers have also fallen short in the application of 
machine learning approaches in evaluating prognosis of aging 
asset, for failure rate prediction. Strangely, these two concepts 
are already in wide usage in the aviation industry (Altay et 
al. 2014). Furthermore, majority of approaches to offshore 
maintenance are void of specific scope on particular asset types 
or focus on specific failure mode like corrosion, based on the 
above paragraph.

Consequently, this research is aimed at exploring the 
possibility of developing a machine learning approach for 
prognostic analysis of offshore oil and gas assets. This offshore 
asset life extension approach will be based on a scope limited 
to subsea/offshore pipelines processing units and the aim will 
be achieved by incorporating Artificial Intelligence technology 
with corrosion prediction datasets obtained from sensor readings 
from subsea/offshore pipelines. The analysis will incorporate 
the use of analytic insights in discovering the most important 
features and the model will be trained using numerous machine 
learning algorithms. The performance of the algorithms will 
be validated with relevant performance indices. In line with 
the identified gaps in this literature review, this project would 
have incorporated the use of image classification methods in 
performing diagnostic analysis, with the prognostic analysis. 
However, scarcity of required datasets will limit the scope of 
this work to the prognostic approach alone.

Section 3

Research Methodology
This section focuses on the research methodology employed 

for this research. It proceeds to establish the source of the acquired 
datasets and clearly define the components of the dataset. 
Furthermore, it outlines the different approaches employed 
toward predicting and maintaining aging issues in offshore 
assets, with specific focus on corrosion related challenges in 
pipelines. Finally, this chapter outlines the different methods 
used in validating our prediction models.

Research Strategy

In delivering the research aim, this paper employs the popular 
CRISP-DM framework, which is presented below.

Figure 4: Overview of the Deployed Research Approach(Shafique and 
Qaiser 2014)

While this research follows the approach presented above, it 
is worth noting that certain elements of the Crisp-DM framework 
was not applied to this project. Therefore, the deployment of the 
result of this research was not carried, given the time constraints 
associated with the delivery of the project.

The Crisp-DM Model

Crisp-DM is the cross-industry standard and the widely 
accepted knowledge discovery process for data mining (Huber 
et al. 2019). The model provides a detailed sequence of activity 
to be followed for any data mining project. As shown in figure 4 
above, the model starts with the requirement to develop a proper 
understanding of the expected business use case, which creates 
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a clear outline of questions intended to be answered (Schröer 
et al. 2021). Additionally, it sets the standard and framework 
for the understanding of the dataset and adequate preparation 
of data for modelling. Data preparation is generally regarded as 
the most important step in a machine learning project (Huber 
et al. 2019; Schröer et al. 2021). Subsequently, as presented in 
figure 4, the prepared data is modelled based on the designed 
business question, and deployed for testing with external data 
(Huber et al. 2019). For the sake of this research, the deployment 
aspect will not be discussed, as the model was not concluded to 
deployment. 

Business Understanding 

A detailed background of maintenance methods has already 
been presented in the Chapter 1 of this project and as such, 
this section will streamline explanations in line with the specific 
project scope. As stated in the literature review above, the 
scope of this project is particularly limited to the evaluation of 
corrosion in offshore/subsea pipelines. In the quest to present an 
wholistic approach to monitoring and maintaining corrosion in 
pipeline, the project explored the prognostic elements of assess 
maintenance,  as presented by (Butler 2012; Malekloo et al. 
2021), a pictorial snapshot of which is presented below.

Figure 5: Overview of Prognostic and Diagnostic Approach to Asset 
Maintenance (Butler 2012).

While the Diagnostics analysis refers to the investigation of 
an asset’s condition, possible problems or anomalies and or the 
exact operational situation of the asset, prognostics relates to 
the analysis or prediction the future, with reference to available 
pertinent data (Lee et al. 2014). Simply put, diagnostics analysis 
refers to the process finding and identifying the failure of an asset 
or otherwise, while prognostics refers to the process of predicting 
or estimating an asset’s failure rate or the remaining useful life. 
A simplified graphical representation of the relationship between 
prognosis and diagnosis is presented below

Figure 6: Relationship Between Diagnosis and Prognosis(Lee et al. 
2014)

In view of the above and as already stated in the aims and 
objectives, as well as the literature review, this research will 
adopt a prognostic approach to predicting the failure of offshore 

assts through the training of numerous regression models for the 
prediction of corrosion rate in a pipeline.

Data Understanding 

Given that the project explored the prognostic method 
of evaluating corrosion threats to many offshore pipelines. 
Datasets was sourced to answer pertinent research questions and 
hypothesis raised.

Data Limitation 

Difficulties in obtaining datasets is a major limitation in 
this research. For research that promised to break uncatered 
grounds in the maintenance of aging assets in the offshore, it 
was particularly noted that oil and gas practitioners and industry 
players are reluctant in releasing datasets, even with offers for 
non-disclosure and service level agreements. The secretive 
approach to dataset can be put down to the sensitive nature of 
the industry. Nonetheless, datasets were obtained for the purpose 
of the research, although in far lesser quality and quantity than 
desired.

The research initially intended to combine diagnostic 
elements of monitoring the condition and operating situation 
of assets, to the prognostic approach eventually employed. This 
would have created a wholesome solution that identifies the exact 
operating condition of an asset and in turn, predict the remaining 
useful life of that asset. Difficulties in obtaining suitable datasets 
made this an impossible task.

Description of Data

Similar to the issue noted above, obtaining dataset for the 
prediction of corrosion rate of offshore pipeline proved difficult 
and was limited to exploration of past research for available data. 
Therefore, dataset used for the predictive analysis was obtained 
from (Chou et al. 2017). The data (presented in Appendix 1) 
refers to sensor readings from stainless steel, under different 
seawater environmental conditions. The data is made up of 6 
columns (detailed below), for 46 sample spaces (rows).

Temperature (T) °C

Dissolved oxygen (DO) mg  L−1

Salinity (Sal) Ppt

Solution pH (pH) pH

Oxidation–Reduction Potential (ORP) mV

Corrosion rate (Rate) 𝜇Acm−2

Table 4: Environmental Factors Forming Part of the Corrosion Rate 
Dataset

What the dataset lacked in quantity, it made it up with 
quality, as it is without any missing data, repeated row, relatively 
normally distributed and with only little cases of outliers as 
shown below.

Data Preparation/Pre-processing 

According to (Zhang et al. 2003; Kwak and Kim 2017), 
data preparation of an analysis framework an essential stage 
in data analysis. According to (Coussement et al. 2017), data 
preparation, also known as the pre-processing stage in arguably 
the most important stage of an analytics job as it depends the 
ultimate success of a prediction.

Prior to data modelling, it is necessary to analyse the data 
quality and treat relevant mis normal where required.  The 
obtained data is relatively clean, with little outliers and relatively 
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normal distribution as shown above. Additionally, there was 
no missing values. Therefore, typical data cleaning steps that 
involves the treatment of missing values and outliers was not 
required. However, due to the slight element of lack of normal 
distribution in some cases and the need to carry out feature 
selection, the type of data pre-processing technique used is 
presented below.

Feature Selection

According to (Coussement et al. 2017) data reduction is 
the processes of reducing the dimensionality of a dataset by 
selecting the relevant and most important features to the required 
prediction. This process drives the concept of feature selection. 
For the sake of this research, an extensive the Pearson’s 
Correlation Coefficient and P-Value was used, for the purpose of 
detecting and selecting the most relevant features in the dataset.

Pearson’s Correlation Coefficient

The Pearson’s Correlation Coefficient is used to determine 
the strength of the linear correlation between a dependent and 
its corresponding independent variable (Mukaka 2012). The 
coefficient typically assigns a value between -1 and 1, depending 
on the type and level of existing correlation. Positive value of 1 
signifies an absolute positive linear correlation, while negative 
1 signifies a total negative linear correlation. Lack of correlation 
between two variables returns a value that is tending to zero.

P-Value

P-Value is a statistical tool used to evaluate the probability 
that the relationship existing between two variables is 
statistically significant (Goodman 2008). Conventional P-Value 
interpretation stipulates that the p-value of less than 0.001 points 
towards strong evidence of a significant correlation, while 0.05 
refers to moderate proof of significant correlation (Goodman 
2008; Halsey et al. 2015). Additionally, 0.1 suggest the existence 
of a possible week significant correlation, while 0.1 shows no 
evidence that the existing correlation is significant.

Data Normalisation

According to (Ferreira et al. 2019), data normalization or 
scaling is a key stage in data preparation, which is required to 
correct normalisation issues in numeric datasets. Datasets with 
normal distribution is hard to come by in real datasets, and the 
purpose of data normalisation is predetermined technique used 
to convert features, to ensure that all scaled attributes have 
the same level of impact. The Min-Max Scaler is used for this 
research.

Min-Max Scaler

This is a straightforward process that particularly fits features 
in a predetermined boundary with a predefined boundary 
(Patro and Sahu 2015). The equation for the Min-Max Scaler/ 
Normalisation is as presented below.

A’ contains Min-Max Normalized data one
If predefined boundary is[C,D]
If A is the range of original data
B is the mapped one data
Data Minning

Following the data preparation and cleaning stage, the 
cleaned datasets where analysed, the datasets was trained with 

different statistical approaches peculiar to the available datasets, 
whilst considering the application and use case.

The analysis of corrosion rate in offshore pipeline involved 
an extensive analysis of the acquired dataset. This includes a 
vast exploratory data and statistical analysis, correlation analysis 
for feature engineering and selection as well data modelling.

Exploratory Data Analysis (EDA)

According to (Komorowski et al. 2016), exploratory data 
analysis is a very critical step in the data mining process, 
following the acquisition and pre-processing of data (sometimes 
as part of the pre-processing phase). The EDA helps an analyst 
to get informed and actionable insights on a given dataset 
and could set the tone for a high performing model. The aim 
of the EDA is to examine data distribution, detect outliers and 
anomalies in the dataset and to determine the specific testing of 
the model hypothesis (Morgenthaler 2009).

In this project, data was extensively explored with numerous 
technics targeted at unearthing relevant anomalies in the dataset. 
Additionally, bivariate and univariate was conducted to explore 
the inherent relationship between the dependent variable 
(corrosion rate) and the independent variables. 

Data Modelling

Following the selection of the features with the best 
correlations with the independent variable, and the exploratory 
data analysis, the model was built for the prediction of corrosion 
rate in offshore/subsea pipelines. For the purpose of this report, 
a regression analysis was carried out. 

Regression Analysis

Regression refers to the mode of analysis that is typically 
deployed to determine the relationship existing between two 
or more variables, with intrinsic dependent and independent 
relation (Uyanık and Güler 2013). Regression analysis helps to 
provide answers ranging from the availability and extent of the 
correlation between the variables and the prospect of producing 
satisfactory predictions of the dependent variable (Uyanık and 
Güler 2013).  According to (Tabachnick et al. 2007), there 
are two types of regressions, namely the univariate and the 
multivariate regression, otherwise known as the simple and the 
multiple regressions respectively. While the simple regression 
typifies the existence of a single dependent variable (otherwise 
known as the label) and a single independent variable. The 
multiple regression on the other hand, refers to a case of more 
than one independent variable, as shown below:

y = Dependent variable
x = Independent
β = Parameter
ε = Error

As shown above, regression presents a generalisation of 
the classification problem, by outputting a “continuous value”, 
as against predictable set as derived in binary and multiple 
classification problems (Awad and Khanna 2015). Invariably, 
the regression model is applicable for use cases where the 
forecasted or predicted output is in continuous form.  

In implementing the regression model, different regression 
algorithms like the Simple Linear Regression, Multiple Linear 
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Adaboost Regression

In its general form Adaboost combines weak learning 
algorithms (that is “boosted”), to achieve enhanced ensemble 
accuracy and produce a much improved and better classifier 
(Kummer and Najjaran 2014). Consequently, when applied to 
regression (otherwise known as Adaboost Regression), Adaboost 
permits for enhancements of the regressors and whilst adapting 
to specific case problems.

Model Evaluation and Performance Metric

In evaluating the performance of the respective algorithms 
stated above, the Coefficient of Determination (R-Square) and 
Root Mean Square Error were used to evaluate the performance 
of the models

Coefficient of Determination (R2)

Coefficient of Determination (R2) is a performance metric 
which is typically described as the variance explained by a 
regression model. The Coefficient of Determination (R2) is 
expressed by the mathematical formular presented below. 
Generally, a Coefficient of Determination (R2) score of 
value closer to 1 typifies a very good analysis (Cameron and 
Windmeijer 1996; Miles 2014);

R2 = coefficient of determination
RSS = sum of squares of residuals
TSS = total sum of squares

Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) is defined as the 
difference between forecasted values and observed values 
(Al-Omari 2015). It is usually a non-zero value, and zero 
indicates a perfect score, and a value closer to zero indicates 
better model performance (Chai and Draxler 2014).

i = variable i

N = number of non-missing data points

ni = actual observations time series

mi = estimated time series

Mean Absolute Error (MAE)

This is one of the popular methods of relating predictions 
with eventual outcomes. It is a measure of error between 
matching observations conveying the identical phenomenon. It 
is regarded as the simplest measure of model accuracy and it is 
expressed as the average of the absolute error, as shown in the 
equation below (Kotz et al. 2005). It is a measure of how far 
away from the actual value, a predicted value is.

MAE = Mean Absolute Error
yi = Prediction
xi = True Value
n = Total number of data points

Regression, Support Vector Regression, as well as the XGBoost 
and Adaboost Regressors were utilised and the respective level 
of performances compared, to determine the best performing 
and optimum algorithm. 

The simple and multiple linear regressions are as described 
above, while a simple description of the Support Vector 
Regression, as well as the XGBoost, Gradient Boost and 
Adaboost Regressors is presented below.

Simple Linear Regression

According to (Kavitha et al. 2016), the simple linear 
regression model is a machine learning model that is based on a 
single independent variable. The relationship between variables 
can be exemplified by the extent of the correlation between 
the variables. A typical case of simple linear regression is a 
presented below.

Figure 7: Simple Linear Regression (Kavitha et al. 2016).

Multiple Linear Regression

Multiple linear regression, also known as the multivariate 
regression, refers to the prediction module that involves the 
prediction of more than on independent variable, as shown in 
figure 9 below

XGBoost Regression

XGBoost is a gradient boosting machine learning library 
that uses recursive dual splitting method to choose the best split 
at every step, in order to arrive at the best predictive model 
(Zhang et al. 2020). According to (Zhang et al. 2020), due to 
its tree nature, the XGBoost is sensitive to outliers and is robust 
against overfitting, making it the preferred model for most data 
scientists.

Gradient Boost Regression

The Gradient Boost Regression model is one whose boosting 
iterations is centred on the efficient gradient descent (Wang 
and Mamo 2020).  The boosting of regression trees potentially 
produces a strong and explainable technique for regression 
analysis.
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Software Tools

Python Programming Language and Jupyter Notebook

Python is a popular multipurpose programming language 
used for web development and machine learning and artificial 
intelligence application. The use case for this project is for 
the analysis and modelling of outlined machine learning and 
artificial intelligence processes. Jupyter notebook on the other 
hand is a code writing application for the creation of machine 
learning models, in python programming language. 

Research Ethics 

The dataset for this research was obtained from open-
source sources, from an openly available research publication, 
in the case of the numeric data. Therefore, there is no ethical 
complication from this research as is void of potential damage to 
any individual or organisation.

Section 4

Analysis and Discussion

Having extensively presented the relevant research 
methodology and approaches employed in this paper (in the 
last chapter), this chapter presents the results and findings of the 
research. This chapter will be presented in two folds. The first 
section (Descriptive Analysis) simply presents the results of our 
analysis, while the second part (Discussion and Analysis) fully 
discusses the findings and presents actionable insights. Finally, 
this section summarises the research contributions, in view of 
the questions raised in the chapter 1 of this report.

Descriptive Analysis

This section is used to present the findings and results, 
before eventual discussion, under the “Discussion and Analysis” 
section. The approach to the result presentation focuses on 
the diagnostic analysis first, and the prognostic analysis. As 
presented in the research methodology, this project equally 
explored the prognostic method of determining the corrosion 
rate of the offshore petroleum pipeline. This was done using 
various regression methods and the result is presented below

Data Pre-processing 

For a dataset that is only made up of 46 rows, data 
pre-processing was a bit straightforward with outliers (Box 
plot presented in Appendix 3) in a few cases, while there was 
no missing values. The frequency distribution charts are as 
presented in the figure below.

Figure 8: Check for Feature Distribution.

AS shown above, the features were normally distributed 
in most cases, except in just a few cases. With the salinity 
and Dissolved Oxygen, largely non-normal, while the PH and 
temperature are with outliers. Furthermore, the dataset is fully 
numeric, with no categorical data, eliminating the need for data 
encoding, both cases are shown in the diagram below. This made 
for a easy pre-processing exercise and the project immediately 
proceeded to the exploratory data analysis phase.

Figure 9: Check for Data Types.

Figure 10: Check for Null Values.

Exploratory Data Analysis 

Feature Analysis

Due to the limited amount of sample, the dataset presents a 
rare case of little statistics to be drawn. However, deeper view of 
the result reveal some exiting details. The statistical analysis of 
the dataset shows a relatively normally distributed sample, with 
the mean and median close in value, except for the “Dissolved 
Oxygen” column. Additionally, the data samples are more dense 
in the middle area, a signs of normally distributed samples.

Figure 11: Statistical Analysis.

Virtually all of the datasets have unique values, which can 
make it hard to examine deeper relationships between features 
and the target label. Similarly, the label is largely limited in 
range, hence almost all values are uniquely represented. This 
can be seen below.
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Figure 12: Density Graphs.

Figure 13: Univariate Analysis of Datasets.

Label Analysis

Similar to the case of feature analysis, the extent of 
possible analysis of the label is limited due the small data size. 
Additionally, the label is made up of almost unique datasets, 
limiting the possible insight to be derived from the data. 
To extend the analysis, a cumulative frequency chart with a 
normally distributed shape achieved, as shown below.

Figure 14: Frequency Distribution Line and Bar Charts.

Feature Selection

The project utilised the Pearson’s Correlation Coefficient 
and the P-Value to establish the relationship between features 
and the target label, in order to identify the features that best 
correlates with the corrosion rate.

Figure 15: Pearson’s Correlation Coefficient.

The correlation above shows that the corrosion rate of a 
pipeline positively correlates with the Temperature, Salinity 
and Oxidation–Reduction Potential (ORP). While the solution 
PH and Dissolved Oxygen, negatively affects the corrosion rate. 
Although, only the Temperature, PH (negatively) and Oxidation–
Reduction Potential (ORP) shows evidence of strong correlation

Similarly, with the respect to the P-Value only the PH, 
Temperature and Oxidation–Reduction Potential (ORP) 
displays evidence of possibly significant correlation with the 
corrosion rate. Salinity, Oxidation–Reduction Potential (ORP) 
and Dissolved Oxygen all have P-Values that suggests that the 
possible correlation is insignificant. This was considered in the 
modelling of the data.

Figure 16: Pearson’s Correlation Coefficient and P-Value.

Discussion and Analysis
This section of this chapter presents the result this research 

for extensive discussion and analysis. As is the trend already in 
this report, this will focus on the analysis of the result of the 
prognostic corrosion rate analysis, for extensive discussion. The 
prognostic analysis for corrosion rate prediction was carried out 
using a number of algorithms.  The discussion of results will 
follow the same framework as presented by the methodology, 
for the sake of ease.

Data Pre-processing

The limitation in the volume of the dataset ensured that 
analysis is carried out with little data pre-processing done. While 
there was no case of missing values, hence the data was not 
treated accordingly. Additionally, while outliers were observed 
in a few of the columns, treatment of outliers was specifically 
avoided for a couple of reasons. Firstly, the dataset contains 
only 46 rows, removing or deleting affected rows will further 
limit the already thin research scope. Additionally, applying 
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relevant treatment methods like Capping/Flooring, Sigma and 
the Exponential Smoothing approaches (Tiwari et al. 2007), will 
alter the accuracy and integrity of the dataset, particularly with 
the limited sample space.

Feature Selection

As stated in the methodology section, a positive Pearson’s 
Correlation Coefficient tending towards 1 signifies the existence 
of a strong positive correlation, while a negative value towards 
one shows a negatively strong correlation. The value tending 
towards evidences the lack of correlation. Additionally, the 
P-Value of less than 0.001 shows that there is strong evidence of 
strong correlation, while the corresponding value less than 0.05 
shows moderate evidence of a strong correlation. This forms the 
baseline for this analysis, that is P-Value above 0.05 is regarded 
as low evidence of possible strong correlation. The table below 
shows the scores used to guide the feature selection process.

Figure 17: Simple Linear Regression of Temperature vs Corrosion 
Rate.

PH

The next feature analysed is the PH of the oceanwater. The 
regression produced a negative linear regression line, with a good 
line of best fit, as shown below. This shows that corrosion rates 
increases with decreasing value of water PH, which corroborates 
(Millette and Mavinic 1988)’s analysis.

Figure 18: Simple Linear Regression of PH vs Corrosion Rate.

Salinity 

The regression line for salinity, which refers to the salt 
content of water, is nearly flat, with almost a straight-line 
(neutral) behaviour. This totally contradicts the expert opinion 
of (Zakowski et al. 2014), who reported that areas with high 
salinity, typically pose high corrosion threats to steels, when 
compared to areas with low salinity.

Figure 19: Simple Linear Regression of Salinity vs Corrosion Rate

Oxidation – Reduction Potential (ORP)

Similar to trends recorded in the case of Temperature, the 
ORP possesses a positive linear relationship with the corrosion 
rate. This infers that corrosion rate increases with increasing 

Features P-Value Pearson's Correlation

Temperature 0.0210 0.3395

PH 0.0043 - 0.4136

Salinity 0.8735 0.0241

Oxidation – Reduction Potential 1.17E-07 0.6894

Dissolved oxygen 0.9502 - 0.0095

Table 5: Feature Selection Analysis - Pearson's Correlations and 
P-Value

In view of the above, both feature selection methods used 
(the Pearson’s Correlation Coefficient and the P-Value), clearly 
produced a consistent result with both methods identifying the 
PH, Temperature and Oxidation–Reduction Potential (ORP) as 
the features with the topmost level of correlation and probability 
of significant correlation.

Data Modelling 

Following the feature selection analysis and the identification 
of features with the strongest evidence of correlation with the 
corrosion rate, an approach to data modelling was devised. In 
training the prediction model, the top features were selected for 
training, and the respective performance was compared to the 
result of the simple linear regression (for each feature against 
the label), the model trained on the whole features and finally, 
model trained on features selected from professional knowledge 
and experience. 

Data Assumptions

It is assumed that the features have a linear relationship 
with the target label and this was validated with the univariate 
regression of each feature against the label, as presented below.

Simple Linear Regression

In order to analyse the impact of respective features on the 
dependent variable, the first approach employed was to conduct 
simple linear regression using each of the independent variable 
against the feature (corrosion rate). 

Temperature

The first variable to be analysed is Temperature. The model 
produced a very suitable line of best and the linear correlation 
corroborates (Konovalova 2021)’s position that increasing value 
of temperature, leads to an increased threat of corrosion on steels
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ORP and vice versa. This position matches the result of (Lee 
et al. 2021)’s report, which predicted high corrosion rates for 
corresponding high value of ORP 

Figure 20: Simple Linear Regression of ORP vs Corrosion Rate.

Dissolved Oxygen

The result of the regression analysis for dissolved oxygen 
(which refers to the volume of oxygen contained in water), shows 
a neutral relationship (see figure below) with the corrosion rate 
of a steel metal, as it produced a near horizontal line across the 
dissolved oxygen axis. This implies that it has a neutral effect 
on the rate of corrosion produced from the metal. This position 
negates the view held by (Jung et al. 2011) that the corrosion 
rate in steels increases with increase in dissolved oxygen, as it 
attacks the passive film protecting the metal.

Figure 21: Simple Linear Regression of ORP vs Corrosion Rate.

Model Performance – Simple Linear Regression

Following the analysis of the fitting of the linear regression 
model for each of the features, it is essential to analyse the model 
performance, using the validation and performance metrices 
(R-Square, Root Mean Squared Error and Mean Absolute 
Error) as stated in the methodology. The table below presents 
the respective values of the different metrices, for the respective 
features.

While, the models performed poorly on the individual 
features as shown by the training accuracy, the model had its 
highest training accuracy on the ORP, and the R-Squared was 
negative for all of the features. Normally, a R-Squared value 
close to the value of 1 suggests a well performing model as 
stated in the methodology section of this report. While the lowest 
obtainable value of R-Squared is zero, in practical sense, it is not 
impossible to obtain negative value. According to (Chicco et al. 
2021), a negative R-Squared can be obtained if the regression 
line is worse than adopting the mean value. This is usually down 
to poor and unreliable dataset, which is the case in this research 
as the limited volume of the dataset ensures that the model is 
not as adequately trained as a larger dataset would afford. 
Additionally, the size of the data limited the data preparation 
and pre-processing approaches, which is regarded as the most 
important step in a machine learning project.

Figure 22: Model Performance for Different Features

Meanwhile, the root mean squared error whose score when 
inclined towards zero, signifies that the model is performing 
well. On this evidence, the model performed better in predicting 
corrosion rate with the ORP. Similarly, using the mean absolute 
error shows that the model performed better in predicting 
with the ORP. The mean absolute error measure the difference 
between the predicted and actual values, with the lower value 
indicating a better performance. The figure above present a plot 
of the mean absolute error and mean squared error values for the 
respective features.

Multiple Linear Regression 

As stated in the methodology above, the analyses carried 
out for this research extends from the simple linear regression 
described above, to exploring model performance for multiple 
regression for the following cases.

1. Multiple Linear Regression using all features

2. Multiple Linear Regression using features with string 
correlations

3. Multiple Linear Regression using feature from industrial 
expertise and knowledge

The multiple regression analysis was carried out using 
a variety of regression algorithms like the Multiple Linear 
Regression, AdaBoost Regressor, Gradient Boosting Regressor, 
XGBoost, all of which has been explained in the methodology

Multiple Linear Regression Using All Features

The multiple regression analysis was done with the above 
algorithms and the performance was analysed with the same set 
of indices as in the simple linear regression. The first attempt 
at the multiple regression was done using all available features, 

Table 6: Model Performance for Different Features.
Training 
Accuracy

Test 
Accuracy

R2 Root Mean 
Squared Error

Mean 
Absolute 
Error

Temperature 0.1616 - 0.9176 - 0.9180 0.3840 0.3410

PH 0.2747 - 0.6738 - 0.6740 0.3590 0.3310

Salinity 0.0033 - 1.1795 - 1.1790 0.4100 0.3800

Oxidation–
Reduction 
Potential

0.6559 - 0.4763 - 0.4760 0.3370 0.3150

Dissolved 
oxygen

0.0047 - 1.2058 - 1.2060 0.4120 0.3820
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without considering the results of our feature selection. The 
model performance summary is as presented in the table below.

corrosion rate. Therefore, a multiple linear regression model was 
carried out, using the same algorithms and performance metrices 
as above.

As shown in the table below, negative R-Squared was 
recorded for all of the models following similar trends with 
early analysis. Additionally, The Gradient Boosting Regressor 
presents the best training accuracy as it is in the case of multiple 
regression for all features. However, the Root Mean Squared 
and Mean Absolute Errors are highest for the Gradient Boosting 
Regressor, contrary to the result from the analysis of the whole 
features.

Table 7: Multiple Linear Regression - Model Performance for All 
Features

Training 
Accuracy

Test 
Accuracy

R2 Root Mean 
Squared Error

Mean 
Absolute 

Error

Multiple Linear 
Regression

0.7475 - 0.7462 - 0.7460 0.3670 0.3430

AdaBoost 
Regressor

0.9673 - 0.7870 - 0.7870 0.3710 0.3661

Gradient 
Boosting 
Regressor

0.9998 - 0.3197 - 0.3197 0.3188 0.2951

XGBoost 
Regressor

0.9814 - 0.3364 - 0.3364 0.3208 0.2924

Similar to issue with simple linear regression, the R-Squared 
returned completely negative values for all algorithms used. This 
equally points to the deficiency in the reliability of the dataset 
and restrictions against adequate and proper data preparation 
and pre-processing. The tendency to return a negative value 
is on of the reasons that researchers have declared R-Squared 
being too limited in usefulness, to be regarded as an effective 
measure of variance in prediction (de Heus 2012). According to 
Chicco et al. (2021), a negative R-Squared can be obtained if the 
regression line is worse than adopting the mean value

Beyond the R-Squared, the training accuracy of the model 
suggests that the Gradient Boosting Regressor produced the 
best performance of all the models used, with XGBoost coming 
second and Adaboost coming third. The generic multiple linear 
regression performed the poorest of the four algorithms used. 
The chart below shows the relationship between the performance 
of the different models.

 Similarly, Gradient Boosting Regressor has the lowest 
Root Mean Squared and Mean Absolute Errors, showing that it 
performed better on test dataset, as it did on the training dataset 
(with the training accuracy.

Figure 23: Multiple Linear Regression - Model Performance for All 
Features

Multiple Linear Regression Using Top Features

Although, based on the performance matrix for the multiple 
linear regression for all features, three of the four algorithms 
used for the multiple linear regression analysis shows impressive 
accuracy and reduced error, it is imperative to try the models on 
the features with the best correlation. According to the feature 
selection result, the Temperature, PH and Oxidation–Reduction 
Potential (ORP) presented the best correlations with the 

Table 8: Multiple Linear Regression - Model Performance for Top 
Features.

Training 
Accuracy

Test 
Accuracy

R2 Root Mean 
Squared 

Error

Mean 
Absolute 

Error

Multiple 
Linear 

Regression
0.7127 - 0.7242 - 

0.7240 0.3640 0.3470

AdaBoost 
Regressor 0.9357 - 0.9446 - 

0.9446 0.3870 0.3809

Gradient 
Boosting 
Regressor

0.9996 - 1.0759 - 
1.0759 0.3999 0.3957

XGBoost 
Regressor 0.9801 - 0.9021 - 

0.9021 0.3828 0.3747

The generic regression model turned out to have the lowest 
error indices. The relationship between the performance metrices 
and the respect models, are as presented in the figure below.

Figure 24: Multiple Linear Regression - Model Performance for Top 
Features

Multiple Linear Regression Using Feature from Industrial 
Knowledge

Research reporting from (Jung et al. 2011; Chou et al. 2017) 
confirmed the constituent of the dataset in this study as they 
revealed that the most important elements used for the prediction 
of corrosion rates in underwater cases are  Temperature, Salinity 
and Oxidation–Reduction Potential (ORP), Dissolved Oxygen 
and PH. However, the domain knowledge description of the 
effect of a couple of these variables, differs from the correlation 
trend as described with the lines of best fits, earlier explained. 
While Dissolved Oxygen and Salinity are supposed to increase 
with increasing effect on corrosion. However, the lines of best 
fits suggest that the data distribution has a neutral effect on 
corrosion rate. 

Therefore, the feature selection done by relating domain 
industry knowledge with the data behaviour, leaves us with PH, 
Temperature and ORP as the selected features. This is exactly 
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the same features selected through correlation analysis. This 
validates the feature selection approach and the analysis for 
feature selected from correlation analysis and that done with 
domain knowledge presents the same result.

Summary of Results and Analysis

Summarily, this chapter started off by presenting the research 
results with particular attention to descriptive analysis. The 
dataset utilised, while relatively clean, with no missing values 
and categorical data, little cases of outliers and relatively normal 
distribution, the limitation in sample size presented a huge 
challenge to the analysis. The discussion aspect of the chapter 
confirms this challenge as the R-Squared result are negative 
values all through the analysis, a result attributed to poor data 
reliability. Model accuracy was generally poor for models 
trained on the individual features. Meanwhile, with multiple 
regression, Gradient Boosting model achieved the best accuracy 
all through the analysis, and the baseline traditional regression 
model performed poorest. Additionally, the model performances 
dropped with the application on selected features. This is not 
entirely a bad situation, as feature selection is not only aimed 
at increasing model accuracy (sometimes have slight reduction 
effect as in the case of this research), but also to reduce noisy 
and unwanted features, so as to reduce overfitting, as relayed by 
(Shardlow 2016). 

Section 5

Recommendations and Conclusion
Aging condition of offshore assets has presented enormous 

challenges to, not just the oil and gas operators, but the whole 
world, as global dependency on oil and gas as the premium source 
of energy continued to present itself. This continued dependence 
and high has strained the offshore assets as producers are obliged 
to continue to produce. While decommissioning is clearly not 
an immediate option for operators, due to its associated cost, 
the need for adequate maintenance of offshore assets is ever so 
necessary. 

Extensive literature research was performed to establish the 
current technological trend in maintaining offshore assets and 
limitations where drawn from existing literatures and industrial 
application. These limitations revealed an obvious gap, on 
the lack of adequate research on the application of machine 
learning on digital twin recorded sensor data, for the detection 
of corrosion rates (a major aging failure mode) in offshore 
pipelines. This research set out to fill this study gap and aimed to 
answer pertinent research questions and hypothesis.

This led to an extensive analysis of sensor recorded datasets, 
and the result was presented with initial attention on descriptive 
analysis. The analysis revealed that the dataset utilised, while 
relatively clean, with no missing values and categorical data, 
little cases of outliers and relatively normal distribution, the 
limitation in sample size presented a huge challenge to the 
analysis. The discussion and analysis of research finding 
confirmed this challenge (limitation of data) as the R-Squared 
result are negative values all through the analysis, a result 
attributed to poor data reliability. This revealed datasets with 
limited sample size can potentially affect model performances, 
corroborating the result of (Cui and Gong 2018; Moghaddam et 
al. 2020)’s analysis.

Model accuracy was generally poor for models trained on 
the individual features. Meanwhile, with multiple regression, 

Gradient Boosting model achieved the best accuracy all through 
the analysis, and the baseline traditional regression model 
performed poorest. Additionally, the model performances 
dropped with the application on selected features. This is not 
entirely a bad situation, as feature selection usually serve several 
purposes. Why it can lead to improvement of model accuracy, 
research shows that feature selection can also bring about slight 
decrease in model accuracy (as in the case of this research) 
(Shardlow 2016), while reducing noisy and unwanted features, so 
as to reduce overfitting, as relayed by (Shardlow 2016).  Despite 
the recorded limitation with the dataset, and the challenges it 
introduced to this research, the analysis still proffered relevant 
answers to the raised research questions, as presented below.

Research Contribution

This chapter extensively analysed the acquired dataset and 
presented variety of machine learning models in predicting 
corrosion rate in offshore pipelines. Varieties of regression 
models were compared with the benchmark traditional multiple 
linear regression. The analysis shows that 

Gradient Boosting Regressor, XGBoost Regressor, AdaBoost 
Regressor (in this order) produced better performances than the 
traditional multiple regression model, when trained with the 
whole features. Additionally, feature selection was carefully 
carried out by exploring the correlation between the label and 
features, to establish the best features, for improved model 
performance. Similarly, the same these models (as stated above 
for full features) performed better than traditional multiple 
regression model when the top features were considered. 
Consequently, this research has provided answers for the 
research questions raised, as presented below:

Research Question 1: What is the effectiveness of the current 
maintenance methods and what are the associated perils?

The review of existing literature revealed that bulk of the existing 
research is focused on conditional monitoring, structural 
modelling, with rare attention to predictive machine learning 
modelling. Additionally, little focus or attention is given to 
specific failure modes (like corrosion) and asset types like the 
subsea/offshore pipelines. 

Research Question 2: What are the key conditions and 
contributing factors (Features) towards corrosion in the offshore 
environment?

The key conditions and contributing factors like Temperature 
(T), Dissolved oxygen (DO), Salinity (Sal), Solution pH 
(pH), Oxidation–Reduction Potential (ORP) made up the 
dependent variables (features) in the dataset. To select the top 
features, feature selection was carried out using the Pearson’s 
Correlation Coefficient and P- Value, for effective and accurate 
selection. Additionally, the industry expertise and experience 
was utilised to compliment the Pearson’s Correlation Coefficient 
and the P-Value. Both analysis selected Temperature, PH and 
Oxidation–Reduction Potential as the top features and model 
training was carried out with just these feature, and compared 
with the model result from the analysis using the whole features. 
The performance of the models was in the same order (with 
Gradient Boosting Regressor performing best, followed by 
XGBoost Regressor, AdaBoost Regressor and traditional 
regression model) when trained on all of the features and when 
done on the top features alone. However, the models had better 
training accuracies when trained on all feature, compared to 
a slightly lower accuracy on the selected feature. Additionally, 
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the validation errors are lower for the model training on the 
full features, compared to higher errors for training done on the 
selected features. This point to possible challenges relating to 
the size and reliability of the datasets, as earlier mentioned.

Research Question 3: Which machine learning model is most 
effective in predicting corrosion rates in offshore pipelines?

The results and analysis presented in this research has shown 
poor performances of the baseline traditional machine learning 
model, in comparison to more advance models used. According 
to the results, the Gradient Boosting Regressor performed best, 
when applied on the full datasets without feature selection, as 
well as when top features are selected. The XGBoost Regressor 
performed next in both cases, while AdaBoost Regressor came 
next, with the least performance coming from the baseline model.

Research Question 4: Can digital twin and machine learning 
be deployed towards improving the current standards in asset 
maintenance?

The presented results and discussion shows the potential 
of achieving enormous accuracy in predicting corrosion rate 
in offshore pipelines, with conventional regression model 
delivering around 70% accuracy, while specialised models like 
the Gradient Boosting Regressor, XGBoost Regressor, AdaBoost 
Regressor produced accuracy of about 95% with all available 
features, and also with top selected features.

This points to the fact that there is enormous potential in 
the application of machine learning techniques on digital twin 
obtained sensor data, in predicting corrosion rate in offshore oil 
and gas pipelines. However, this can be achieved with certain 
adjustment to the data acquisition process, for better data 
reliability and improved prediction model building. 

Recommendation

This research laid bare a huge challenge presented to the 
oil and gas industry. The initial focus of the research aim to 
incorporate a diagnostic approach to asset management, to the 
performed predictive analysis. However, this proved abortive, 
with the lack of relevant datasets for the purpose. Additionally, 
dataset for the predictive model which eventually carried out, 
equally proved difficult to obtain. Hence the use of a dataset, 
with limited sample space, which drastically affected the quality 
of the result, evidenced by the negative R-Square values all 
through, and low performance of the selected features.

Therefore, it is recommended that a government regulation 
is enacted to enforce transparency amongst oil companies, 
to encourage growth and innovations, through the release of 
adequate data, for the promotion of growth focused research 
activities as this.

Future Work

Despite the exceptional research work delivered with this 
project, the limitation in data availability opens up potential area 
of research focus. Firstly, it would be exciting to perform similar 
analysis as it’s been carried out in this research on a larger data 
sample, to further validate the findings and observations derived 
from this work. Additionally, the diagnostic analysis (which will 
utilise computer vision technologies in identifying asset failure) 
present a novel research potential toward improved maintenance 
of offshore assets. This is a concept that is already in wide use 
in the aviation industry, with the lack of availability of relevant 
data, limiting its application in the offshore oil and gas industry. 

Furthermore, this diagnostic technology can be incorporated 
with the prognostic approach presented in this research, to 
achieve an holistic solution to solving aging asset challenges, 
by firstly diagnosing the asset condition from it physical state, 
and analysing its failure rate and remaining useful life, through 
prognostic analysis.
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