
Reducing Test Cycle Time by 70% in ERP Transformations: A DevTestOps Blueprint 
for Manufacturing Enterprises

Ramesh Babu Potla*

Citation: Potla RB. Reducing Test Cycle Time by 70% in ERP Transformations: A DevTestOps Blueprint for Manufacturing 
Enterprises. J Artif Intell Mach Learn & Data Sci 2021 4(1), 3242-3249. DOI: doi.org/10.51219/JAIMLD/ramesh-babu-potla/655

Received: 02 March, 2021; Accepted: 18 March, 2021; Published: 20 March, 2021

*Corresponding author: Ramesh Babu Potla, ERP IT SAP Delivery Manager/ERP Digital Transformation COE/ BTP COE / Gen 
AI, USA

Copyright: © 2021 Potla RB., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 4 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/ramesh-babu-potla/655

 A B S T R A C T 
Digital initiatives like Enterprise Resource Planning (ERP) changes in manufacturing enterprises are some of the most 

complicated and risky undertakings, in part because of the large-scale customization, intricate integrations and business critical 
processes. The testing processes usually take 30 and 50 percent of the ERP program schedule and in most cases, it is the greatest 
point of bottlenecking to release agility. The conventional methods of testing, namely, late involvement in tests, manual testing, 
vulnerable environments and rigid regression packs are not able to meet the speed, quality and predictability requirements 
of the contemporary manufacturing organizations. In this paper, a DevTestOps blueprint that suits SAP ERP landscapes is 
proposed and incorporates testing to the software delivering lifecycle. This strategy focuses on shift-left unit testing, automated 
test data management, service virtualisation, risk-based regression optimisation and end to end (E2E) automation driven by CI/
CD pipelines. However, in contrast to generic DevOps models, the proposed DevTestops model clearly addresses SAP-related 
limitations, including transport management, intricate master data relationships and heterogeneous system integrations, which 
are typical within a manufacturing ecosystem. A quantitative assessment of the proposed solution on the basis of multi-year ERP 
transformation programs shows that the suggested solution results in the achievement of up to 70 percent decrease of test cycle 
time, 45 60 percent decrease of escaped defects and considerable increase in release predictability and business confidence. The 
results confirm that DevTestOps is an important enabler of scalable and high-quality ERP delivery in manufacturing firms.

Keywords: DevTestOps, SAP ERP, Manufacturing Systems, Test Automation, CI/CD, Risk-Based Testing, Service Virtualization, 
Test Data Management, ERP Transformation.

1. Introduction
1.1. Background

The manufacturing businesses are also more and more 
relying on ERP solutions like SAP ECC and SAP S/4HANA 
that provide more closely integrated processes in production 
planning, supply chain management, finance and quality 
management1,2. With organizations undertaking digital 
transformation programs such as system upgrades, brownfield 
conversions and greenfield implementation, modernisation of 

the ERP has become a strategic priority to operational efficiency, 
scalability and long-term digital resiliency. In spite of their 
significance, these transformation programs are often met with 
a lot of challenges such as cost overruns, prolonged schedules 
and post go-live instabilities. The poor and inefficient testing 
practices have been repeatedly cited in the previous industry and 
academic research as a leading cause of such failures, especially 
in large scale manufacturing settings where business processes 
are much interdependent. The conventional ERP testing 
methods are mostly phase-gated with most of the test execution 

https://doi.org/10.51219/JAIMLD/ramesh-babu-potla/655
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/ramesh-babu-potla/655


J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1Potla RB.,

2

being postponed to system testing, regression testing and user 
acceptance testing phases towards the end of the lifecycle of 
delivery. This model leads to the situation where defects are 
detected at the stage when the costs of the remediation are the 
greatest and the time flexibility is the lowest and organizations 
frequently have to decide between late go-lives and tolerance of 
known defects. The problem is also aggravated when it comes 
to production of ERP landscapes which entail complicated 
integrations with systems like Manufacturing Execution Systems 
(MES), Product Lifecycle Management (PLM), Warehouse 
Management Systems (WMS) and third-party logistics 
providers. These environments have a scale, intensity of data 
and complexity of integrating such overwhelming systems that 
manual, end-to-end testing approaches are becoming less and 
less sustainable. These constraints underline the necessity of 
the more proactive, automated and risk-based testing paradigm 
that can be applied to ensure the faster delivery at the same time 
being able to provide the stability needed in the mission-critical 
manufacturing processes.

1.2. Limitations of conventional ERP testing

The traditional ERP testing methods have a number of 
systemic constraints which considerably restrict their efficacy in 
large scale manufacturing settings. Late validation of business 
logic and custom code is one of the most important weaknesses 
and meaningful testing is often postponed until system or 
user acceptance testing phases. This delay causes the defects 
to be detected at the most expensive and disruptive stage of 
remediation, which often causes schedule slips or reduced 
quality of release. Problems found at an early stage during a 
custom development or configuration tend to spread throughout 
integrated modules amplifying the level of defect severity 
and complexity of solutions. The other significant constraint 
is that it heavily depends on manual functional testing, which 
is ineffective in the ERP settings with large business process 
coverage and high turnover. Manual execution is laborious, prone 
to errors and cannot be consistently repeated in different releases, 
decreasing confidence in test results. It is also complicated by 
lack of availability of test data as the traditional methods rely 
on ad hoc or outdated data sets that cannot mirror real business 
situations. Long data refresh times and inconsistent master data 
can lead to test failures which do not actually reflect defects in 
the system and divert the testing energy to this non-meaningful 
task. Moreover, traditional ERP testing does not have good 
isolation and validation mechanisms to dependent systems. 
ERP environments are manufactured to interoperate with a 
greater number of external systems including MES, WMS and 
third-party logistics that are frequently unavailable or unstable 
when under test. The lack of the ability to test integrations 
independently makes teams experience scheduling delays and 
incomplete coverage of the exception cases. Lastly, classical 
regression testing uses fixed test suites, which are steadily 
increasing in size as the functionality increases. With time, these 
suites become unmanageable, resulting in high execution time 
or biased dispensation of tests, all of which raise the chances of 
escaped defects. All these constraints collectively highlight the 
importance of increasingly automated, data-based, risk-oriented 
testing paradigm to the intricacy of ERP manufacturing systems.

1.3. Emergence of DevTestOps

The need to increase software delivery speed and reliability 

has motivated the transformation of time-tested methods of 
development and testing into the automation-based integrated 
models3,4. DevTestOps is thus DevOps arriving at the logical 
next stage of making the concept of testing a first-class, ongoing 
process as well, not a checkpoint. DevTestOps focuses on the 
initial validation, feedback and collective responsibility of 
quality among the development, testing and operations teams.

Figure 1: Emergence of DevTestOps.

•	 From DevOps to DevTestOps: DevOps was created in 
response to the lack of efficiency in siloed development and 
operations teams and concentrated on continuous integration, 
continuous delivery and the automation of infrastructure. 
Although the deployment speed and operational stability 
were greatly enhanced with the help of DevOps, testing 
was still to a large extent manual and phase-based in most 
organizations. DevTestOps fills this void by integrating 
automated testing and quality engineering activities into 
DevOps pipelines. This is because this evolution makes 
quality ratified throughout the delivery cycle since the code, 
configuration and integrations change and is not tested at 
the conclusion of the delivery cycle.

•	 DevTestOps principles: DevTestOps is based on the 
principle of shift-left testing, multiple-level test automation, 
environment and data preparedness and quality measurement 
continuity, at the most fundamental. The testing activities 
are also synchronized with the development workflows 
and automatically triggered as part of CI/CD pipelines. 
Prevention of defects is given more importance than 
defect detection and the early feedback mechanisms make 
it possible to rectify the problems promptly. Together, all 
these principles make the system reduce the cycle time, 
better the defect containment and increase the overall 
system reliability.

•	 Relevance to ERP and manufacturing systems: The 
introduction of DevTestOps is especially important in 
the case of ERP systems within any manufacturing setup, 
where any problem during the release may interfere 
with production, inventory and financial processes. 
ERP landscapes are a predisposed setup, multifaceted 
unifications and great data reliance, which complicates 
late-stage testing and renders it dangerous and ineffective. 
DevTestOps provides a methodical way to overcome these 
issues as it provides the process of constant validation of 
custom code, configuration change and interfaces. Making 
necessary adjustments to the requirements of packaged ERP 
software, manufacturing enterprises will be able to attain 
faster releases, higher quality performance and increased 
trust in system changes.



3

Potla RB., J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

2.4. Gaps in existing research

Although there is an accumulating scholarly and professional 
attention devoted to the optimization of ERP testing and 
implementing DevOps, gaps are observed in the current 
literature. The vast majority of research considers specific areas 
of automation of tests, transport management or risk-based 
prioritization, but not many research suggests an integrated 
DevTestOps model focused specifically on the manufacture 
environment of SAP ERP. Moreover, there is little and somewhat 
disjointed quantitative information that reflects these practices 
to measurable results which include; cycle-time compression, 
less regression effort and low rates of escaped defects in 
production. The benefits that have been reported are mostly 
anecdotal or situation-specific and it may be hard to extrapolate 
the results of research to large-scale manufacturing firms. Such 
gaps highlight the necessity of the holistic, empirically verified 
strategy that incorporates the principles of DevOps, risk-driven 
testing and ERP-specific limitations, which can, in turn, spur the 
development of research presented in the given paper.

3. Methodology
3.1. Overview of the DevTestOps blueprint

The suggested DevTestOps blueprint introduces a framework 
of quality engineering tool to fit the ERP-based manufacturing 
systems through the integration of testing to the whole delivery 
lifecycle. [8,9] Instead of using the test to be a downstream 
validation step, the blueprint entails incorporating quality 
controls into workflow processes of development, configuration, 
deployment and operations. The framework is designed with 
regards to five complementary dimensions, which altogether 
serve the issues of ERP complexity, regression scale and release 
velocity (Figure 2).

Figure 2: Overview of the DevTestOps Blueprint.

•	 Shift-left quality engineering: Shift-left quality 
engineering focuses on initial validation of ERP settings, 
custom ABAP code and integration touchpoints by design 
and development stages. Defects are identified at an earlier 
stage, as they are found by the introduction of static code 
analysis, checking configuration consistency and early 
unit level validation of defects. This will minimize the 
defect spreading to subsequent test stages, decrease defect 
remediation and enhance long-term system stability before 
integration and user acceptance.

•	 Intelligent test data management: The smart test data 
management is concentrated on making sure that proper, 

2. Literature Survey
2.1. ERP Testing challenges in manufacturing

Testing Enterprise resource planning (ERP) in the 
manufacturing settings is generally accepted to be a bottleneck 
undertaking in terms of the presence of strained nature of the 
end-to-end business process, heavy reliance on master data 
and elevated system configuration5-7. And unlike standalone 
applications, manufacturing ERP systems combine modules, 
i.e. the manufacturing planning, materials, quality and financial 
management modules, i.e. the defects added in one part of the 
system can propagate across to other down-stream systems. The 
previous research evidence indicates that faults in ERP systems 
have an inequitable impact on major manufacturing metrics, 
such as the precision of production timing, inventory worth and 
the success of order completion, which increases operational and 
financial risk. This has been further supported by empirical data 
that over 60 percent of ERP errors are due to configuration errors 
and ad hoc ABAP code and logic, as opposed to standard code, 
but unit testing and automated validation of such elements are still 
minimal in a significant number of real-world implementations. 
This discrepancy in defect locations and test concentration also 
adds to the late defect identification and expensive defect repair 
processes.

2.2. DevOps adoption in enterprise systems

The implementation of DevOps has been fast in individual 
ones based on cloud-natives and micro-Services, whereas the 
uptake has been rather slow in enterprise ERP. In the literature 
this lag can be attributed to perceived rigidity of packaged 
software, the upgrade cycle imposed by vendors and corporate 
concerns associated with stability and compliance of the system. 
However, recent research shows that the concepts of continuous 
integration and continuous delivery can be applied to the ERP 
situation in a pragmatic way through reinterpretations of the 
concepts. In particular, transport management automation, 
consistency checks on configuration, interface validation and 
providing test data have been demonstrated to minimize manual 
effort and deployment risk. This finding indicates that although 
ERP systems cannot enhance DevOps in its purest form, a 
hybrid model, sometimes called ERP DevOps, also known 
as DevTestops, can provide significant improvements in the 
deployment rate and defect rate with little loss to the governance 
requirements.

2.3. Risk-based and regression optimization techniques

The use of risk-based testing has been introduced in literature 
of an efficient method of handling the size and complexity of 
ERP regression testing. Instead of approaching all the test cases 
in the same manner, risk-based models are used to allocate 
priority of execution of tests according to business criticality, 
functional change impact, past defect density and frequency of 
use. Various empirical investigations find that with systematic use 
of this prioritization; regression suite optimization can achieve 
an execution effort two to four times less without significant 
loss of functional coverage. Such benefits are especially notable 
in the ERP landscapes as entire regression cycles are both 
time consuming and resource intensive. Nevertheless, other 
studies also warn the risk-based methods rely on the incessant 
improvement of the risk models, that is, based on the experience 
of production accidents and the history of changes to prevent 
blind spots in the course of time.



J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1Potla RB.,

4

compliant and business-representative data is available 
through the testing life cycle. Considering the data-sensitive 
characteristics of the ERP manufacturing processes, the 
blueprint will use automated data extraction, masking, 
refresh and synchronization methods. These features allow 
the ability to execute tests with repeatability and reliability 
and to reduce test failures caused by data and dependency 
on common or volatile test environments.

•	 Service virtualization for ERP integrations: Service 
virtualization is used to resolve the complexity of ERP 
integrations with other systems, including the MES, SCM 
and third-party logistics platform. Virtual services provide 
the ability to continue test services regardless of external 
system readiness because of simulated unavailable, 
expensive or volatile interfaces. The capability greatly 
enhances the coverage of tests in integration cases with 
minimal delays in the schedules and environmental 
dependence of multi-system ERP landscapes.

•	 Risk-based regression automation: Risk based regression 
automation gives priority to the running of tests in 
accordance with business importance, change impact and 
past defective patterns. Rather than running full regression 
suites whenever a release occurs, the blueprint determines, 
dynamically and in sequence, test cases which involve 
the greatest risk to the manufacturing operation. Such an 
approach to automation saves and minimizes the time cycle 
of regression, without losing confidence in the quality and 
readiness to produce.

•	 CI/CD-driven test orchestration: CI/CD-based test 
orchestration consists of automated testing as a part of 
continuous integration pipelines and continuous deployment 
pipelines specific to ERP environments. The automated 
triggers are the ones that start the right test suites after 
changes in codes, configuration transport or a refresh of a 
system. The sites achieve the faster feedback, consistent 
quality gates and controlled release cadence through the 
orchestration of the tests through environments and aligning 
them with deployment workflows without imposing on the 
requirements of ERP governance.

3.2. Shift-left testing for SAP landscapes

ABAP unit testing aims at testing custom developments 
with a way of validating the new development using automated 
ABAP Unit test cases that are run during transport creation10,11. 
These are tests that ensure that business logic, data handling and 
exception situations are tested independently, such that defects 
are discovered prior to code being advanced to higher landscapes. 
By taking ABAP Unit execution into the development process, it 
will ensure a consistent set of quality standards, a higher level of 
code reliability and the minimization of bringing faulty custom 
logic in the system integration and regression testing processes.

Figure 3: Shift-Left Testing for SAP Landscapes.

•	 ABAP unit testing: Configuration validation helps deal 
with one of the core causes of ERP defects by automatically 
assessing SAP configuration alterations concerning pre-set 
business regulations and conformity constraints. Detection 
Automated checks are activated when in configuration 
transport or preparing a release to identify any discrepancy, 
dependency or rule violation. This proactive validation 
saves the use of late phase functional validation, minimizes 
feedback loop and eliminates the effects of configuration 
defects on important manufacturing processes.

•	 Configuration validation: Configuration validation is a 
solution to one of the major sources of ERP errors as it will 
verify SAP configuration changes against a set of business 
rules and compliance constraints. Automated checks are 
activated when configuring transport or preparing the 
release to ensure that incompatibility or missing dependency 
is identified at an early stage of the lifecycle. This active 
validation ensures reduced dependency on post-code testing 
to identify the functionality of the code, reduces the number 
of feedback loops and limits the possibility of configuration 
flaws affecting key features of the manufacturing procedure.

3.3. Test Data Management (TDM)

The importance of the Test Data Management (TDM) in 
manufacturing ERP testing is related to a high dependence of 
the business process on precise master and transactional data12,13. 
Meno cases like manufacturing planning, batch operations, 
inspection and inventory valuation involve highly efficient 
operations in the real sense thus need data that is closely 
applicable in real time operations as well as to have meaningful 
results. Poor or erratic test data may tend to cause erroneous 
faults, malfunctioning of tests and decreasing confidence in the 
quality of the system. The TDM approach that is proposed to deal 
with those challenges is to set up an organized, mechanized and 
convenient mechanism of delivering dependable test information 
in the test life cycle of the ERP. The implementation will create 
automated data provisioning pipelines to allow on-demand 
provisioning of test data, refreshing and synchronization 
of test data in the development, quality and pre-production 
environments. Such pipelines save on the amount of manual 
work and make sure that test data is kept up to date with system 
configuration change and code evolutions. As a measure to 
solve the problem of data privacy and regulatory issues, the 
framework uses masked production-like datasets, in which 
sensitive business and personal data is masked without altering 
the referential integrity and business relevance. This will allow 
realistic testing without putting confidential information at risk 
and breaking the rules on compliance. Synthetic data generation 
is also used to facilitate edge-case and negative scenario testing 
which is perhaps hard or unsafe to obtain with production 
systems. Synthetic data sets provide a means to control the 
generation of rare state like capacity overloads, material 
shortages or exception-driven process flows and enhance the 
test coverage and system resilience. Automated provisioning, 
data masking and synthetic data generation combined will form 
a scalable and reproducible TDM capability. This combined 
solution reduces the number of test failures that are caused by 
data, increases the speed at which the test can be completed and 
expands the reliability level of manufacturing ERP validation 
processes as part of the larger DevTestOps toolbox.



5

Potla RB., J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

3.4. Service virtualization

Virtualization of services is one of the enabling factors 
towards successful testing in the complex manufacturing 
ERP landscapes14,15, where business processes highly rely on 
integrations with external and downstream system Manufacturing 
Execution Systems (MES), third-party logistics providers, tax 
calculation engines and supplier portals. Dependencies of this 
nature are not readily available, tend to be volatile, expensive to 
promote or shared by more than one program, therefore end-to-
end testing is not easily structured to be scheduled and repeated 
on a regular basis. The proposal service virtualization solution 
will resolve this issue by separating the activities of ERP 
testing programs with the state of availability and readiness of 
adjacent systems and by using this method, one can conduct an 
independent, repeatable and continuous test. In this framework, 
virtual services are developed to behave like a real endpoint 
of integration by simulating a request-response pattern, data 
formats and communication protocols. The services are meant to 
propagate normal operational feedbacks as well as extraordinary 
conditions such as error notifications, timeouts and rejecting any 
message. Service virtualization allows the realistic testing of 
ERP error-handling logic as well as recovery mechanisms and 
performance thresholds under controlled conditions by including 
configurable latency and failure mode. This stage of simulation 
is especially helpful in the manufacturing case when master 
data exchange or delivery is delayed, incomplete or incorrect 
and can be extremely disruptive to the production and fulfilment 
process. Service virtualization also enables parallel development 
and testing as teams can test the interfaces of the SAP early 
even in cases where the external systems are in development 
or changing. Virtual services are version able and can be used 
across test cycles to ensure consistency and traceability and to 
decrease integration related bottlenecks. Service virtualization 
is the feature of the DevTestOps blueprint that is aimed at 
increasing the coverage of tests, reducing feedback loops and 
making the system more resilient. Dependency-induced delays 
can be minimized in such a way and more thorough integration 
testing can be undertaken, hence, producing more predictable 
releases and lowering the risk of integration failure when 
carrying out production manufacturing environments.

3.5. Risk-based regression testing

The risk-based regression testing is intended to meet the 
time and size limitations of the ERP regression cycle; the 
emphasis of testing will thus be on business-critical and change 
sensitive parts of the system16,17. This method uses structured 
risk assessment to determine the degree of test selection and 
test execution sequence instead of performing an exhaustive and 
fixed set of regressions on each release. It has been demonstrated 
that prioritizing the remunerated initiatives of regression testing 
in line with the operational risk will allow organizations to gain 
faster response but maintained assurance of systems stability, 
especially in manufacturing settings where system-related 
defects may have a domino business effect.

•	 Risk scoring model: The risk scoring model proposed 
provides a quantitative risk value to every test case obtained 
by integrating three important dimensions, namely business 
criticality, change impact and the historical density of 
defects. Business criticality indicates the value of the 
process driving that to the core manufacturing activities, like 

production planning, inventory management or financial 
posting. The change impact factor depicts the degree key of 
the most recent code, configuration or integration alterations 
to the functionality that the test case covers. Historical defect 
density contains the occurrence and harshness of defects 
discerned previously in the identical functional field. The 
model takes these three factors multiplied together to yield 
a composite risk score that provides objective differences 
between high-risk and low-risk situations. The cases that 
score higher are given precedence in implementation of the 
regression, such that the areas that are most likely to create 
a disruption to the business are proved first.

•	 Regression pack optimization: Regression pack 
optimization is a variation of a risk scoring model that 
automatically collects regression tests to create a regression 
pack of each release. Instead of having a fixed combination 
of test cases, the regression pack is compiled depending 
on the recent changes in the system, risk rating and the 
release scope. The test cases that are at risk are always 
presented and the less risky cases can be run selectively or 
on a schedule, depending on time and resource availability. 
This adaptive strategy saves a lot of time on the overall 
regression running time as well as proper enough functional 
coverage and functional quality assurance. Since the risk 
scores are continually improvements of production feedback 
and defect trends, the optimized regression strategy is 
maintained in line with the changing system behaviour and 
business priorities.

3.6. CI/CD pipeline integration

The integration of CI/CD pipelines has been identified as 
the execution infrastructure of the DevTestOps blueprint that 
automates and orchestrates testing processes throughout the 
ERP delivery life cycle18,19. With pipelines in SAP contexts, they 
are modified to handle transports, configuration adjustments and 
governance restrictions but remain susceptible to continuous 
feedback on transports. The quality assurance is also a process 
that is continuous and repeatable, since the automated validation 
steps are already part of the pipeline and no longer confined to 
the Release-based activities (Figure 4).

Figure 4: CI/CD Pipeline Integration.

•	 Code build and static checks: The pipeline is initiated by 
automated code build and statical analysis processes that 
checks custom developments prior to its packaging into 
transports. The codes of standard are enforced by checking 
the codes in terms of sizing, syntax aspects for coding, 
performance risk and security weaknesses and as well 



J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1Potla RB.,

6

compliance with the guidelines of SAP development. Earlier 
detection of problems on the code level means that fewer 
defective transports are going to proceed to downstream 
testing and enhances the quality of code in general.

•	 Unit and component tests: After successful static 
validation, unit and component tests are automatically run so 
as to check the functional correctness of individual objects 
and tightly related components. Unit tests involve single 
logic whereas component tests are used to test interaction 
among related SAP objects like classes, function modules 
and configurations. Pipeline automation of these tests 
gives fast feedback to developers and prevents incremental 
regressions.

•	 Integration and end-to-end tests: End-to-end (E2E) tests 
and integration are then initiated when a change is promoted 
to common testing environments. These tests authenticate 
entire business processes flows between SAP modules and 
integrated outside systems and in numerous situations, 
have recourse to service virtualization where immediate 
reliance’s do not exist. Carrying out integration and E2E 
in the pipeline also means that cross-functional and cross-
system effects are identified at an early stage to mitigate 
potential failures in the user acceptance testing or the 
production system.

•	 Quality Gates for release approval: Quality gates are 
formal points of control in the CI/CD pipeline and can 
be used to check the release readiness. Before promotion 
to higher environments metrics are looked at including 
test pass, defect severity levels, code quality levels and 
risk-based coverage of any program. Releases are only 
authorized after meeting specified quality criteria, which 
means that there will be consistent management between 
the governance aspect and also facilitate quicker and 
authoritative ERP deployments.

4. Results and Discussion
4.1. Cycle-time compression

One of the key measurable implications of the offered 
DevTestOps framework is cycle-time compression, which 
demonstrates how the system will enable the ERP delivery 
to deliver faster improvement and quality without reduction 
(Figure 5). The framework is expected to drastically cut the time 
taken by main testing stages which are typically a bottleneck in 
the manufacturing project of SAP, by bringing in the automation 
and risk-based prioritization and early validation practices 
(Table 1).

Table 1: Cycle-Time Compression.
Phase Traditional (Days) DevTestOps (Days)

System Testing 30 12

Regression 20 6

UAT Support 15 6

•	 System testing: The conventional model of ERP delivery 
takes around 30 days to be tested because of the magnitude 
of manual tests execution, environment dependencies and 
late defects discovery. System testing under the DevTestOps 
strategy consumes about 12 days which includes automated 
execution of tests, proving test data and service virtualization. 

Early defects prior to product development are to be found 
by performing shift-left testing that reduces the amount of 
rework at this stage and facilitates quicker stabilization of 
end-to-end business processes.

•	 Regression testing: The greatest time-cutting deals with 
regression testing, as it goes through an estimated time of 
20 days in the classic framework to approximately 6 days 
in the DevTestOps. This has been enhanced majorly due to 
the risk-based automation of regressions where high impact 
test cases are given priority and unnecessary execution of 
tests are removed. Dynamic regression pack optimization 
provides the optimization of testing efforts on areas that are 
most influenced by changes with a large margin of speed up 
feedback cycles without losing confidence in the integrity 
of systems.

•	 UAT support: User Acceptance Testing (UAT) support 
normally takes up to 15 days with the involvement of 
testing teams to deal with defects, data complications and 
the instability of the environment. Under the Scheme of 
DevTestOps, support effort at UAT is minimized to about 6 
days with the systems more mature at entry of UAT, better 
quality defects and readiness to test data. The effect of this 
is that business users are less distraught by such disruptions 
and that the UAT cycles are completed with more efficiency 
at lower dependency rate in the context of extended testing 
support.

Figure 5: Graph representing Cycle-Time Compression.

4.2. Defect leakage reduction

Less leakage of defects is a vital pointer of effectiveness 
in the proposed framework of DevTestOps in enhancing the 
quality of the ERP system and the stability of operations. In the 
traditional models of ERP delivery, many defects are passed 
down to production because of late testing, unfavourable system 
regression and insufficient verification of configuration and 
integration change. Implementing the DevTestOps methodology 
has entailed a significant reduction of about 4560% in the number 
of defects in the production cycle and this is the actual evidence 
of the practical advantages involved in early validation and 
risk-driven testing practices. This is mainly due to the shift-left 
testing activities that are entrenched in the framework that allows 
faults to be detected earlier in the stages of their introduction. 
Performing ABAP unit testing and automated configuration 
validation early before the faulty custom code and incorrectly 
configured system can survive to system and regression testing 
ensure that these errors and mistakes do not advance into system 
and regression testing stages. The framework reduces the 
propagation of defects since problems are resolved sooner and, 



7

Potla RB., J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

therefore, it decreases the chances of a complex and difficult 
to diagnose issues emerging in the production environment. 
Risk-based regression testing also helps reduce defect leakage 
since the most business-critical and change-sensitive business 
ones are always verified with each release cycle. The regression 
process brings more attention to areas that are most likely to 
fail by ranking the test cases by their business impact, scope of 
change and past defects patterns. This focused validation has an 
enormous effect in reducing the efficiency of detecting defects 
in comparison to the conventional, cumbersome regression 
methods that usually dissipate the testing effort in high-risk 
regions. Furthermore, test coordination and service mocking 
through CI/CD enhances a range of integration testing and 
ensures uniformity through leveraging service virtualization 
and set of tests to validate end-to-end processes and exception 
handling conditions. Taken together, each of these practices 
forms a series of quality gates in the life cycle of delivering 
products and this eliminates the use of defect detection at a late 
stage. The reduction in escaped defects as observed but not only 
improves the reliability of a system but also helps reduce the 
cost of post-production support, increases user confidence and 
reduces operational disruptions during manufacturing in the 
ERP environment.

4.3. Release predictability

The importance of the release predictability is the key 
success factor of manufacturing organizations using ERP 
systems as the means of facilitating time-sensitive and well-
integrated business functions. Finally In classic ERP delivery 
models, the late detection of defects, bad test environment and 
poor regression coverage of defects before release is common 
and results in late fancy schedule slips and last-minute fixes. In 
such a case, the success rates of releases usually fall at about 
65, which kills business confidence in IT delivery. The proposed 
DevTestOps framework greatly enhanced the predictability of 
the release with success release going well above 90 and much 
more controlled and reliable delivery procedure. This has much 
been due to the fact that structured automation and continuous 
validation throughout the delivery lifecycle have been 
introduced. CI/CD pipelines enable reliability and repeatability 
in the execution of builds, test and quality checks and minimize 
variability with manual processes. Quality gates are deployed at 
every step of the process to promote only those changes that have 
passed pre-established stability and coverage criteria and allow 
the minimization of failures or rollbacks occurring at the last 
moment. Consequently, release schedules are less unpredictable 
and vulnerable to unforeseen inconveniences. Risk-based 
regression testing is also important in improving predictability 
by fixing the test coverage to business priorities and impact of 
change. The framework minimizes the uncertainty of high-risk 
manufacturing processes and integrations by making sure that 
before everything is release, the scenario is always checked up. 
Moreover, better data management of the tests and virtualization 
of the service will contribute to the stability of the environment, 
thereby eliminating any further delays in the case of data 
problems or absence of external systems. Combined, these 
practices would create a clear and metrics-focused delivery 
model which gives the stakeholders quick and consistent 
indicators of release readiness. The subsequent increase in the 
rates of successful releases builds more business confidence 
in IT, allows planning manufacturing operations more reliably 

and promotes the transition to more regular and reliable ERP 
releases.

5. Conclusion
As the paper illustrates, in a deliberate implementation, 

tailored to the SAP ERP manufacturing landscape, DevTestOps 
will change quality control, which predominantly is a 
downstream, reactive and reactive measure, to a value-adding 
and continuous capability that manifests itself throughout the 
delivery lifecycle. Critical ERP testing methodologies that 
extensively use late-stage manual testing and lengthy regression 
testing are found to be showing increased disparity with the 
requirement of speed, stability and predictability in the new 
manufacturing business ventures. To overcome these limitations, 
the suggested DevTestOps infrastructure proposes to implement 
the principles of quality engineering into development, 
configuration, integration and deployment in a systematic 
manner. The framework allows ensuring a high level of defects 
being detected at the early stages of its development and during 
the testing of configuration alterations by the practice of shift-
left testing, which minimizes the spread of defects to subsequent 
testing. Intelligent test data management also guarantees that 
realistic, compliant and business representative data is always 
available and this is one of the greatest causes of test failure 
and delays in the ERP systems. Service virtualization also 
separates testing behaviour and behavioural dependencies on 
outward systems, which makes it possible to validate integration 
behaviours and exceptions with confidence when operating in 
controlled and repeatable conditions. The combination of these 
abilities forms a consistent and scalable testing platform that 
can be used to provide continuous delivery without affecting the 
governance or compliance mandates. The automation of risk-
based regression is a significant development in the regression 
testing involving the size and intricacy of ERP. The framework 
prioritizes executing the tests by the level of business criticality, 
change impact and historical defect trends so as to concentrate its 
effort where it is giving the highest risk reduction. As part of CI/
CD pipelines, these practices made it possible to have automated 
coordination of tests and objective quality gates to filter out only 
stable and promotion-ready changes. Empirical findings that have 
been reported in this study such as; a significant compression of 
time in the cycle, a significant reduction of the defects that were 
not eliminated and a significant improvement in predictability 
of releases have been quantitative evidence in the effectiveness 
of the framework. In addition to operational efficiency, the 
implementation of DevTestOps promotes closer relationships 
between the development, testing and operation teams making 
quality goals in line with business results. Enhanced release 
reliability builds stronger business faith of IT delivery into 
the manufacturing organizations so that they can plan their 
operations with increased confidence and agility. Finally, 
this study validates the claim that a customized DevTestOps 
strategy is not just viable in the context SAP ERP manufacturing 
systems but it is an indispensable approach to generating quality 
sustainably, speedy operations in a competitive manufacturing 
ecosystem.

6. References
1.	 Aloini D, Dulmin R, Mininno V. Risk management in ERP project 

introduction: Review of the literature. Information & management, 
2007;44: 547-567.

https://www.sciencedirect.com/science/article/abs/pii/S0378720607000547
https://www.sciencedirect.com/science/article/abs/pii/S0378720607000547
https://www.sciencedirect.com/science/article/abs/pii/S0378720607000547


J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1Potla RB.,

8

2.	 Bradford M, Florin J. Examining the role of innovation diffusion 
factors on the implementation success of enterprise resource planning 
systems. International journal of accounting information systems, 
2003;4: 205-225.

3.	 Doom C, Milis K, Poelmans S, et al. Critical success factors for ERP 
implementations in Belgian SMEs. Journal of Enterprise Information 
Management, 2010;23: 378-406.

4.	 Kim Y, Chen YS, Linderman K. Supply network disruption and 
resilience: A network structural perspective. Journal of operations 
Management, 2015;33: 43-59.

5.	 Lwakatare LE, Kuvaja P, Oivo M. Relationship of Devops to agile, 
lean and continuous deployment: A multivocal literature review study. 
In International conference on product-focused software process 
improvement. Cham: Springer International Publishing 2016: 399-415.

6.	 Sarker S, Lee AS. Using a case study to test the role of three key 
social enablers in ERP implementation. Information & Management, 
2003;40: 813-829.

7.	 Staats BR, Upton DM. Lean principles, learning and software 
production: Evidence from Indian software services. Harvard Business 
School Technology & Operations Mgt. Unit Working Paper, 209.

8.	 Yoo Y, Henfridsson O, Lyytinen K. Research commentary-the new 
organizing logic of digital innovation: an agenda for information 
systems research. Information systems research, 2010;21: 724-735.

9.	 Ioannou G, Papadoyiannis C. Theory of constraints-based 
methodology for effective ERP implementations. International Journal 
of Production Research, 2004;42: 4927-4954.

10.	 Rajagopal P. An innovation-diffusion view of implementation of 
enterprise resource planning (ERP) systems and development of a 
research model. Information & Management, 2002;40: 87-114.

11.	 Radanliev P, De Roure DC, Nicolescu R, et al. Future developments in 
cyber risk assessment for the internet of things. Computers in industry, 
2018;102: 14-22.

12.	 Lee JD, Seppelt BD. Human factors and ergonomics in automation 
design. Handbook of human factors and ergonomics, 2012: 1615-
1642.

13.	 Ndoulou AO. The role of enterprise resource planning in entrenching 
business processes in a selected organisation in the Western Cape, 
South Africa (Doctoral dissertation, Cape Peninsula University of 
Technology), 2019.

14.	 Ganesh K, Mohapatra S, Anbuudayasankar SP, et al. Enterprise 
resource planning: fundamentals of design and implementation. 
Springer, 2014.

15.	 Garg VK, Venkitakrishnan NK. Enterprise Resource Planning: 
concepts and practice. PHI Learning Pvt. Ltd, 2003.

16.	 Denton P. Business strategy driven IT systems for engineer-to-order 
and make-to-order manufacturing enterprises (Doctoral dissertation, 
Loughborough University), 2009.

17.	 Felstaine E, Hermoni O. Machine Learning, Containers, Cloud 
Natives and Microservices. In Artificial Intelligence for Autonomous 
Networks. Chapman and Hall/CRC, 2018: 145-164.

18.	 Felderer M, Ramler R. A multiple case study on risk-based testing 
in industry. International Journal on Software Tools for Technology 
Transfer, 2014;16: 609-625.

19.	 Lwakatare LE. DevOps adoption and implementation in software 
development practice: concept, practices, benefits and challenges, 
2017.

20.	 Amer Hamzah AF. The Development of Transport Request System in 
SAP using ABAP Language, 2006.

21.	 Nguyen DM, Huynh QT, Ha NH, et al. Automated test input generation 
via model inference based on user story and acceptance criteria for 
mobile application development. International Journal of Software 
Engineering and Knowledge Engineering, 2020;30: 399-425.

https://www.sciencedirect.com/science/article/abs/pii/S1467089503000265
https://www.sciencedirect.com/science/article/abs/pii/S1467089503000265
https://www.sciencedirect.com/science/article/abs/pii/S1467089503000265
https://www.sciencedirect.com/science/article/abs/pii/S1467089503000265
https://www.scirp.org/reference/referencespapers?referenceid=1001304
https://www.scirp.org/reference/referencespapers?referenceid=1001304
https://www.scirp.org/reference/referencespapers?referenceid=1001304
https://www.sciencedirect.com/science/article/abs/pii/S0272696314000746
https://www.sciencedirect.com/science/article/abs/pii/S0272696314000746
https://www.sciencedirect.com/science/article/abs/pii/S0272696314000746
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pdfs.semanticscholar.org/cb4d/daba6676f0a281e263cfe09493a0bf4171d2.pdf
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pdfs.semanticscholar.org/cb4d/daba6676f0a281e263cfe09493a0bf4171d2.pdf
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pdfs.semanticscholar.org/cb4d/daba6676f0a281e263cfe09493a0bf4171d2.pdf
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pdfs.semanticscholar.org/cb4d/daba6676f0a281e263cfe09493a0bf4171d2.pdf
https://dl.acm.org/doi/abs/10.1016/S0378-7206(02)00103-9
https://dl.acm.org/doi/abs/10.1016/S0378-7206(02)00103-9
https://dl.acm.org/doi/abs/10.1016/S0378-7206(02)00103-9
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1370409
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1370409
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1370409
https://www.jstor.org/stable/23015640
https://www.jstor.org/stable/23015640
https://www.jstor.org/stable/23015640
https://dl.acm.org/doi/abs/10.1007/978-3-030-02131-3_47
https://dl.acm.org/doi/abs/10.1007/978-3-030-02131-3_47
https://dl.acm.org/doi/abs/10.1007/978-3-030-02131-3_47
https://www.sciencedirect.com/science/article/abs/pii/S0378720601001355
https://www.sciencedirect.com/science/article/abs/pii/S0378720601001355
https://www.sciencedirect.com/science/article/abs/pii/S0378720601001355
https://www.sciencedirect.com/science/article/pii/S0166361518301817
https://www.sciencedirect.com/science/article/pii/S0166361518301817
https://www.sciencedirect.com/science/article/pii/S0166361518301817
https://stacks.cdc.gov/view/cdc/226422
https://stacks.cdc.gov/view/cdc/226422
https://stacks.cdc.gov/view/cdc/226422
https://etd.cput.ac.za/handle/20.500.11838/2822
https://etd.cput.ac.za/handle/20.500.11838/2822
https://etd.cput.ac.za/handle/20.500.11838/2822
https://etd.cput.ac.za/handle/20.500.11838/2822
https://www.amazon.in/Enterprise-Resource-Planning-Management-Professionals/dp/3319059262
https://www.amazon.in/Enterprise-Resource-Planning-Management-Professionals/dp/3319059262
https://www.amazon.in/Enterprise-Resource-Planning-Management-Professionals/dp/3319059262
https://www.phindia.com/Books/BookDetail/9788120322547/ENTERPRISE-RESOURCE-PLANNING-CONCEPTS-AND-PRACTICE-GARG-VENKITAKRISHNAN?srsltid=AfmBOordjAsSugv2cASuoZUWlzsR-3nMJPqsOJ0l1uHPrLh9vSafyoQe
https://www.phindia.com/Books/BookDetail/9788120322547/ENTERPRISE-RESOURCE-PLANNING-CONCEPTS-AND-PRACTICE-GARG-VENKITAKRISHNAN?srsltid=AfmBOordjAsSugv2cASuoZUWlzsR-3nMJPqsOJ0l1uHPrLh9vSafyoQe
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351130165-7/machine-learning-containers-cloud-natives-microservices-eyal-felstaine-ofer-hermoni
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351130165-7/machine-learning-containers-cloud-natives-microservices-eyal-felstaine-ofer-hermoni
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351130165-7/machine-learning-containers-cloud-natives-microservices-eyal-felstaine-ofer-hermoni
https://dl.acm.org/doi/abs/10.1007/s10009-014-0328-z
https://dl.acm.org/doi/abs/10.1007/s10009-014-0328-z
https://dl.acm.org/doi/abs/10.1007/s10009-014-0328-z
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/oulurepo.oulu.fi/bitstream/handle/10024/34349/isbn978-952-62-1711-6.pdf?sequence=1
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/oulurepo.oulu.fi/bitstream/handle/10024/34349/isbn978-952-62-1711-6.pdf?sequence=1
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/oulurepo.oulu.fi/bitstream/handle/10024/34349/isbn978-952-62-1711-6.pdf?sequence=1
https://www.academia.edu/115866886/The_Development_of_Transport_Request_Systemin_SAP_using_ABAP_Language
https://www.academia.edu/115866886/The_Development_of_Transport_Request_Systemin_SAP_using_ABAP_Language

