ISSN: 2583-9888 (;)/URF PUBLISHERS

R
DOI: doi.org/10.51219/JAIMLD/ramesh-babu-potla/655 = connect with research world

Journal of Artificial Intelligence, Machine Learning and Data Science

https://urfpublishers.com/journal/artificial-intelligence

Vol: 4 & Iss: 1 Research Article

Reducing Test Cycle Time by 70% in ERP Transformations: A DevTestOps Blueprint
for Manufacturing Enterprises

Ramesh Babu Potla*

Citation: Potla RB. Reducing Test Cycle Time by 70% in ERP Transformations: A DevTestOps Blueprint for Manufacturing
Enterprises. J Artif Intell Mach Learn & Data Sci 2021 4(1), 3242-3249. DOI: doi.org/10.51219/JAIMLD/ramesh-babu-potla/655

Received: 02 March, 2021; Accepted: 18 March, 2021; Published: 20 March, 2021

*Corresponding author: Ramesh Babu Potla, ERP IT SAP Delivery Manager/ERP Digital Transformation COE/ BTP COE / Gen
AL USA

Copyright: © 2021 Potla RB., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

ABSTRACT

Digital initiatives like Enterprise Resource Planning (ERP) changes in manufacturing enterprises are some of the most
complicated and risky undertakings, in part because of the large-scale customization, intricate integrations and business critical
processes. The testing processes usually take 30 and 50 percent of the ERP program schedule and in most cases, it is the greatest
point of bottlenecking to release agility. The conventional methods of testing, namely, late involvement in tests, manual testing,
vulnerable environments and rigid regression packs are not able to meet the speed, quality and predictability requirements
of the contemporary manufacturing organizations. In this paper, a DevTestOps blueprint that suits SAP ERP landscapes is
proposed and incorporates testing to the software delivering lifecycle. This strategy focuses on shift-left unit testing, automated
test data management, service virtualisation, risk-based regression optimisation and end to end (E2E) automation driven by CI/
CD pipelines. However, in contrast to generic DevOps models, the proposed DevTestops model clearly addresses SAP-related
limitations, including transport management, intricate master data relationships and heterogeneous system integrations, which
are typical within a manufacturing ecosystem. A quantitative assessment of the proposed solution on the basis of multi-year ERP
transformation programs shows that the suggested solution results in the achievement of up to 70 percent decrease of test cycle
time, 45 60 percent decrease of escaped defects and considerable increase in release predictability and business confidence. The
results confirm that DevTestOps is an important enabler of scalable and high-quality ERP delivery in manufacturing firms.

Keywords: DevTestOps, SAP ERP, Manufacturing Systems, Test Automation, CI/CD, Risk-Based Testing, Service Virtualization,
Test Data Management, ERP Transformation.

the ERP has become a strategic priority to operational efficiency,
scalability and long-term digital resiliency. In spite of their
significance, these transformation programs are often met with

1. Introduction

1.1. Background

The manufacturing businesses are also more and more
relying on ERP solutions like SAP ECC and SAP S/4HANA
that provide more closely integrated processes in production
planning, supply chain management, finance and quality
management'?>. With organizations undertaking digital
transformation programs such as system upgrades, brownfield
conversions and greenfield implementation, modernisation of

a lot of challenges such as cost overruns, prolonged schedules
and post go-live instabilities. The poor and inefficient testing
practices have been repeatedly cited in the previous industry and
academic research as a leading cause of such failures, especially
in large scale manufacturing settings where business processes
are much interdependent. The conventional ERP testing
methods are mostly phase-gated with most of the test execution

https://doi.org/10.51219/JAIMLD/ramesh-babu-potla/655
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/ramesh-babu-potla/655

Potla RB.,

being postponed to system testing, regression testing and user
acceptance testing phases towards the end of the lifecycle of
delivery. This model leads to the situation where defects are
detected at the stage when the costs of the remediation are the
greatest and the time flexibility is the lowest and organizations
frequently have to decide between late go-lives and tolerance of
known defects. The problem is also aggravated when it comes
to production of ERP landscapes which entail complicated
integrations with systems like Manufacturing Execution Systems
(MES), Product Lifecycle Management (PLM), Warehouse
Management Systems (WMS) and third-party logistics
providers. These environments have a scale, intensity of data
and complexity of integrating such overwhelming systems that
manual, end-to-end testing approaches are becoming less and
less sustainable. These constraints underline the necessity of
the more proactive, automated and risk-based testing paradigm
that can be applied to ensure the faster delivery at the same time
being able to provide the stability needed in the mission-critical
manufacturing processes.

1.2. Limitations of conventional ERP testing

The traditional ERP testing methods have a number of
systemic constraints which considerably restrict their efficacy in
large scale manufacturing settings. Late validation of business
logic and custom code is one of the most important weaknesses
and meaningful testing is often postponed until system or
user acceptance testing phases. This delay causes the defects
to be detected at the most expensive and disruptive stage of
remediation, which often causes schedule slips or reduced
quality of release. Problems found at an early stage during a
custom development or configuration tend to spread throughout
integrated modules amplifying the level of defect severity
and complexity of solutions. The other significant constraint
is that it heavily depends on manual functional testing, which
is ineffective in the ERP settings with large business process
coverage and high turnover. Manual execution is laborious, prone
to errors and cannot be consistently repeated in different releases,
decreasing confidence in test results. It is also complicated by
lack of availability of test data as the traditional methods rely
on ad hoc or outdated data sets that cannot mirror real business
situations. Long data refresh times and inconsistent master data
can lead to test failures which do not actually reflect defects in
the system and divert the testing energy to this non-meaningful
task. Moreover, traditional ERP testing does not have good
isolation and validation mechanisms to dependent systems.
ERP environments are manufactured to interoperate with a
greater number of external systems including MES, WMS and
third-party logistics that are frequently unavailable or unstable
when under test. The lack of the ability to test integrations
independently makes teams experience scheduling delays and
incomplete coverage of the exception cases. Lastly, classical
regression testing uses fixed test suites, which are steadily
increasing in size as the functionality increases. With time, these
suites become unmanageable, resulting in high execution time
or biased dispensation of tests, all of which raise the chances of
escaped defects. All these constraints collectively highlight the
importance of increasingly automated, data-based, risk-oriented
testing paradigm to the intricacy of ERP manufacturing systems.

1.3. Emergence of DevTestOps

The need to increase software delivery speed and reliability

J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

has motivated the transformation of time-tested methods of
development and testing into the automation-based integrated
models®**. DevTestOps is thus DevOps arriving at the logical
next stage of making the concept of testing a first-class, ongoing
process as well, not a checkpoint. DevTestOps focuses on the
initial validation, feedback and collective responsibility of
quality among the development, testing and operations teams.

EMERGENCE OF
DEVTESTOPS

—
= e

wrsd Manafactluring
Syslems

DovTestOps
Principles

Figure 1: Emergence of DevTestOps.

* From DevOps to DevTestOps: DevOps was created in
response to the lack of efficiency in siloed development and
operations teams and concentrated on continuous integration,
continuous delivery and the automation of infrastructure.
Although the deployment speed and operational stability
were greatly enhanced with the help of DevOps, testing
was still to a large extent manual and phase-based in most
organizations. DevTestOps fills this void by integrating
automated testing and quality engineering activities into
DevOps pipelines. This is because this evolution makes
quality ratified throughout the delivery cycle since the code,
configuration and integrations change and is not tested at
the conclusion of the delivery cycle.

* DevTestOps principles: DevTestOps is based on the
principle of shift-left testing, multiple-level test automation,
environment and data preparedness and quality measurement
continuity, at the most fundamental. The testing activities
are also synchronized with the development workflows
and automatically triggered as part of CI/CD pipelines.
Prevention of defects is given more importance than
defect detection and the early feedback mechanisms make
it possible to rectify the problems promptly. Together, all
these principles make the system reduce the cycle time,
better the defect containment and increase the overall
system reliability.

* Relevance to ERP and manufacturing systems: The
introduction of DevTestOps is especially important in
the case of ERP systems within any manufacturing setup,
where any problem during the release may interfere
with production, inventory and financial processes.
ERP landscapes are a predisposed setup, multifaceted
unifications and great data reliance, which complicates
late-stage testing and renders it dangerous and ineffective.
DevTestOps provides a methodical way to overcome these
issues as it provides the process of constant validation of
custom code, configuration change and interfaces. Making
necessary adjustments to the requirements of packaged ERP
software, manufacturing enterprises will be able to attain
faster releases, higher quality performance and increased
trust in system changes.

Potla RB.,

2. Literature Survey
2.1. ERP Testing challenges in manufacturing

Testing Enterprise resource planning (ERP) in the
manufacturing settings is generally accepted to be a bottleneck
undertaking in terms of the presence of strained nature of the
end-to-end business process, heavy reliance on master data
and elevated system configuration®’. And unlike standalone
applications, manufacturing ERP systems combine modules,
i.e. the manufacturing planning, materials, quality and financial
management modules, i.e. the defects added in one part of the
system can propagate across to other down-stream systems. The
previous research evidence indicates that faults in ERP systems
have an inequitable impact on major manufacturing metrics,
such as the precision of production timing, inventory worth and
the success of order completion, which increases operational and
financial risk. This has been further supported by empirical data
that over 60 percent of ERP errors are due to configuration errors
and ad hoc ABAP code and logic, as opposed to standard code,
butunit testing and automated validation of such elements are still
minimal in a significant number of real-world implementations.
This discrepancy in defect locations and test concentration also
adds to the late defect identification and expensive defect repair
processes.

2.2. DevOps adoption in enterprise systems

The implementation of DevOps has been fast in individual
ones based on cloud-natives and micro-Services, whereas the
uptake has been rather slow in enterprise ERP. In the literature
this lag can be attributed to perceived rigidity of packaged
software, the upgrade cycle imposed by vendors and corporate
concerns associated with stability and compliance of the system.
However, recent research shows that the concepts of continuous
integration and continuous delivery can be applied to the ERP
situation in a pragmatic way through reinterpretations of the
concepts. In particular, transport management automation,
consistency checks on configuration, interface validation and
providing test data have been demonstrated to minimize manual
effort and deployment risk. This finding indicates that although
ERP systems cannot enhance DevOps in its purest form, a
hybrid model, sometimes called ERP DevOps, also known
as DevTestops, can provide significant improvements in the
deployment rate and defect rate with little loss to the governance
requirements.

2.3. Risk-based and regression optimization techniques

The use of risk-based testing has been introduced in literature
of an efficient method of handling the size and complexity of
ERP regression testing. Instead of approaching all the test cases
in the same manner, risk-based models are used to allocate
priority of execution of tests according to business criticality,
functional change impact, past defect density and frequency of
use. Various empirical investigations find that with systematic use
of this prioritization; regression suite optimization can achieve
an execution effort two to four times less without significant
loss of functional coverage. Such benefits are especially notable
in the ERP landscapes as entire regression cycles are both
time consuming and resource intensive. Nevertheless, other
studies also warn the risk-based methods rely on the incessant
improvement of the risk models, that is, based on the experience
of production accidents and the history of changes to prevent
blind spots in the course of time.

J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

2.4. Gaps in existing research

Although there is an accumulating scholarly and professional
attention devoted to the optimization of ERP testing and
implementing DevOps, gaps are observed in the current
literature. The vast majority of research considers specific areas
of automation of tests, transport management or risk-based
prioritization, but not many research suggests an integrated
DevTestOps model focused specifically on the manufacture
environment of SAP ERP. Moreover, there is little and somewhat
disjointed quantitative information that reflects these practices
to measurable results which include; cycle-time compression,
less regression effort and low rates of escaped defects in
production. The benefits that have been reported are mostly
anecdotal or situation-specific and it may be hard to extrapolate
the results of research to large-scale manufacturing firms. Such
gaps highlight the necessity of the holistic, empirically verified
strategy that incorporates the principles of DevOps, risk-driven
testing and ERP-specific limitations, which can, in turn, spur the
development of research presented in the given paper.

3. Methodology
3.1. Overview of the DevTestOps blueprint

The suggested DevTestOps blueprint introduces a framework
of quality engineering tool to fit the ERP-based manufacturing
systems through the integration of testing to the whole delivery
lifecycle. [8,9] Instead of using the test to be a downstream
validation step, the blueprint entails incorporating quality
controls into workflow processes of development, configuration,
deployment and operations. The framework is designed with
regards to five complementary dimensions, which altogether
serve the issues of ERP complexity, regression scale and release
velocity (Figure 2).

overview
of the Service Virtualisation
Deviestops for ERP Integrations

Blueprin

Rizk Based Regression
Aurormation

CLACD- Driven
Test Drchestration

Figure 2: Overview of the DevTestOps Blueprint.

e Shift-left quality engineering: Shift-left quality
engineering focuses on initial validation of ERP settings,
custom ABAP code and integration touchpoints by design
and development stages. Defects are identified at an earlier
stage, as they are found by the introduction of static code
analysis, checking configuration consistency and early
unit level validation of defects. This will minimize the
defect spreading to subsequent test stages, decrease defect
remediation and enhance long-term system stability before
integration and user acceptance.

e Intelligent test data management: The smart test data
management is concentrated on making sure that proper,

Potla RB.,

compliant and business-representative data is available
through the testing life cycle. Considering the data-sensitive
characteristics of the ERP manufacturing processes, the
blueprint will use automated data extraction, masking,
refresh and synchronization methods. These features allow
the ability to execute tests with repeatability and reliability
and to reduce test failures caused by data and dependency
on common or volatile test environments.

* Service virtualization for ERP integrations: Service
virtualization is used to resolve the complexity of ERP
integrations with other systems, including the MES, SCM
and third-party logistics platform. Virtual services provide
the ability to continue test services regardless of external
system readiness because of simulated unavailable,
expensive or volatile interfaces. The capability greatly
enhances the coverage of tests in integration cases with
minimal delays in the schedules and environmental
dependence of multi-system ERP landscapes.

* Risk-based regression automation: Risk based regression
automation gives priority to the running of tests in
accordance with business importance, change impact and
past defective patterns. Rather than running full regression
suites whenever a release occurs, the blueprint determines,
dynamically and in sequence, test cases which involve
the greatest risk to the manufacturing operation. Such an
approach to automation saves and minimizes the time cycle
of regression, without losing confidence in the quality and
readiness to produce.

* CI/CD-driven test orchestration: CI/CD-based test
orchestration consists of automated testing as a part of
continuous integration pipelines and continuous deployment
pipelines specific to ERP environments. The automated
triggers are the ones that start the right test suites after
changes in codes, configuration transport or a refresh of a
system. The sites achieve the faster feedback, consistent
quality gates and controlled release cadence through the
orchestration of the tests through environments and aligning
them with deployment workflows without imposing on the
requirements of ERP governance.

3.2. Shift-left testing for SAP landscapes

ABAP unit testing aims at testing custom developments
with a way of validating the new development using automated
ABAP Unit test cases that are run during transport creation'®!'.
These are tests that ensure that business logic, data handling and
exception situations are tested independently, such that defects
are discovered prior to code being advanced to higher landscapes.
By taking ABAP Unit execution into the development process, it
will ensure a consistent set of quality standards, a higher level of
code reliability and the minimization of bringing faulty custom
logic in the system integration and regression testing processes.

O

Figure 3: Shift-Left Testing for SAP Landscapes.

J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

* ABAP unit testing: Configuration validation helps deal
with one of the core causes of ERP defects by automatically
assessing SAP configuration alterations concerning pre-set
business regulations and conformity constraints. Detection
Automated checks are activated when in configuration
transport or preparing a release to identify any discrepancy,
dependency or rule violation. This proactive validation
saves the use of late phase functional validation, minimizes
feedback loop and eliminates the effects of configuration
defects on important manufacturing processes.

* Configuration validation: Configuration validation is a
solution to one of the major sources of ERP errors as it will
verify SAP configuration changes against a set of business
rules and compliance constraints. Automated checks are
activated when configuring transport or preparing the
release to ensure that incompatibility or missing dependency
is identified at an early stage of the lifecycle. This active
validation ensures reduced dependency on post-code testing
to identify the functionality of the code, reduces the number
of feedback loops and limits the possibility of configuration
flaws affecting key features of the manufacturing procedure.

3.3. Test Data Management (TDM)

The importance of the Test Data Management (TDM) in
manufacturing ERP testing is related to a high dependence of
the business process on precise master and transactional data'>!3.
Meno cases like manufacturing planning, batch operations,
inspection and inventory valuation involve highly efficient
operations in the real sense thus need data that is closely
applicable in real time operations as well as to have meaningful
results. Poor or erratic test data may tend to cause erroneous
faults, malfunctioning of tests and decreasing confidence in the
quality of the system. The TDM approach that is proposed to deal
with those challenges is to set up an organized, mechanized and
convenient mechanism of delivering dependable test information
in the test life cycle of the ERP. The implementation will create
automated data provisioning pipelines to allow on-demand
provisioning of test data, refreshing and synchronization
of test data in the development, quality and pre-production
environments. Such pipelines save on the amount of manual
work and make sure that test data is kept up to date with system
configuration change and code evolutions. As a measure to
solve the problem of data privacy and regulatory issues, the
framework uses masked production-like datasets, in which
sensitive business and personal data is masked without altering
the referential integrity and business relevance. This will allow
realistic testing without putting confidential information at risk
and breaking the rules on compliance. Synthetic data generation
is also used to facilitate edge-case and negative scenario testing
which is perhaps hard or unsafe to obtain with production
systems. Synthetic data sets provide a means to control the
generation of rare state like capacity overloads, material
shortages or exception-driven process flows and enhance the
test coverage and system resilience. Automated provisioning,
data masking and synthetic data generation combined will form
a scalable and reproducible TDM capability. This combined
solution reduces the number of test failures that are caused by
data, increases the speed at which the test can be completed and
expands the reliability level of manufacturing ERP validation
processes as part of the larger DevTestOps toolbox.

Potla RB.,

3.4. Service virtualization

Virtualization of services is one of the enabling factors
towards successful testing in the complex manufacturing
ERP landscapes'*'®, where business processes highly rely on
integrations with external and downstream system Manufacturing
Execution Systems (MES), third-party logistics providers, tax
calculation engines and supplier portals. Dependencies of this
nature are not readily available, tend to be volatile, expensive to
promote or shared by more than one program, therefore end-to-
end testing is not easily structured to be scheduled and repeated
on a regular basis. The proposal service virtualization solution
will resolve this issue by separating the activities of ERP
testing programs with the state of availability and readiness of
adjacent systems and by using this method, one can conduct an
independent, repeatable and continuous test. In this framework,
virtual services are developed to behave like a real endpoint
of integration by simulating a request-response pattern, data
formats and communication protocols. The services are meant to
propagate normal operational feedbacks as well as extraordinary
conditions such as error notifications, timeouts and rejecting any
message. Service virtualization allows the realistic testing of
ERP error-handling logic as well as recovery mechanisms and
performance thresholds under controlled conditions by including
configurable latency and failure mode. This stage of simulation
is especially helpful in the manufacturing case when master
data exchange or delivery is delayed, incomplete or incorrect
and can be extremely disruptive to the production and fulfilment
process. Service virtualization also enables parallel development
and testing as teams can test the interfaces of the SAP early
even in cases where the external systems are in development
or changing. Virtual services are version able and can be used
across test cycles to ensure consistency and traceability and to
decrease integration related bottlenecks. Service virtualization
is the feature of the DevTestOps blueprint that is aimed at
increasing the coverage of tests, reducing feedback loops and
making the system more resilient. Dependency-induced delays
can be minimized in such a way and more thorough integration
testing can be undertaken, hence, producing more predictable
releases and lowering the risk of integration failure when
carrying out production manufacturing environments.

3.5. Risk-based regression testing

The risk-based regression testing is intended to meet the
time and size limitations of the ERP regression cycle; the
emphasis of testing will thus be on business-critical and change
sensitive parts of the system'®!”. This method uses structured
risk assessment to determine the degree of test selection and
test execution sequence instead of performing an exhaustive and
fixed set of regressions on each release. It has been demonstrated
that prioritizing the remunerated initiatives of regression testing
in line with the operational risk will allow organizations to gain
faster response but maintained assurance of systems stability,
especially in manufacturing settings where system-related
defects may have a domino business effect.

e Risk scoring model: The risk scoring model proposed
provides a quantitative risk value to every test case obtained
by integrating three important dimensions, namely business
criticality, change impact and the historical density of
defects. Business criticality indicates the value of the
process driving that to the core manufacturing activities, like

J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

production planning, inventory management or financial
posting. The change impact factor depicts the degree key of
the most recent code, configuration or integration alterations
to the functionality that the test case covers. Historical defect
density contains the occurrence and harshness of defects
discerned previously in the identical functional field. The
model takes these three factors multiplied together to yield
a composite risk score that provides objective differences
between high-risk and low-risk situations. The cases that
score higher are given precedence in implementation of the
regression, such that the areas that are most likely to create
a disruption to the business are proved first.

* Regression pack optimization: Regression pack
optimization is a variation of a risk scoring model that
automatically collects regression tests to create a regression
pack of each release. Instead of having a fixed combination
of test cases, the regression pack is compiled depending
on the recent changes in the system, risk rating and the
release scope. The test cases that are at risk are always
presented and the less risky cases can be run selectively or
on a schedule, depending on time and resource availability.
This adaptive strategy saves a lot of time on the overall
regression running time as well as proper enough functional
coverage and functional quality assurance. Since the risk
scores are continually improvements of production feedback
and defect trends, the optimized regression strategy is
maintained in line with the changing system behaviour and
business priorities.

3.6. CI/CD pipeline integration

The integration of CI/CD pipelines has been identified as
the execution infrastructure of the DevTestOps blueprint that
automates and orchestrates testing processes throughout the
ERP delivery life cycle'®!°. With pipelines in SAP contexts, they
are modified to handle transports, configuration adjustments and
governance restrictions but remain susceptible to continuous
feedback on transports. The quality assurance is also a process
that is continuous and repeatable, since the automated validation
steps are already part of the pipeline and no longer confined to
the Release-based activities (Figure 4).

Sn b Code Bulld and Static

1
. | v 1 Chiecks

i
|

., CI/CD Pipeline | m

Integration

[TH T R aanponenis
Tesls

Integration and End-
to-End tests

L9 3 Crualiiy CGates for
Release Approval

Figure 4: CI/CD Pipeline Integration.

* Code build and static checks: The pipeline is initiated by
automated code build and statical analysis processes that
checks custom developments prior to its packaging into
transports. The codes of standard are enforced by checking
the codes in terms of sizing, syntax aspects for coding,
performance risk and security weaknesses and as well

Potla RB.,

compliance with the guidelines of SAP development. Earlier
detection of problems on the code level means that fewer
defective transports are going to proceed to downstream
testing and enhances the quality of code in general.

e Unit and component tests: After successful static
validation, unit and component tests are automatically run so
as to check the functional correctness of individual objects
and tightly related components. Unit tests involve single
logic whereas component tests are used to test interaction
among related SAP objects like classes, function modules
and configurations. Pipeline automation of these tests
gives fast feedback to developers and prevents incremental
regressions.

e Integration and end-to-end tests: End-to-end (E2E) tests
and integration are then initiated when a change is promoted
to common testing environments. These tests authenticate
entire business processes flows between SAP modules and
integrated outside systems and in numerous situations,
have recourse to service virtualization where immediate
reliance’s do not exist. Carrying out integration and E2E
in the pipeline also means that cross-functional and cross-
system effects are identified at an early stage to mitigate
potential failures in the user acceptance testing or the
production system.

* Quality Gates for release approval: Quality gates are
formal points of control in the CI/CD pipeline and can
be used to check the release readiness. Before promotion
to higher environments metrics are looked at including
test pass, defect severity levels, code quality levels and
risk-based coverage of any program. Releases are only
authorized after meeting specified quality criteria, which
means that there will be consistent management between
the governance aspect and also facilitate quicker and
authoritative ERP deployments.

4. Results and Discussion
4.1. Cycle-time compression

One of the key measurable implications of the offered
DevTestOps framework is cycle-time compression, which
demonstrates how the system will enable the ERP delivery
to deliver faster improvement and quality without reduction
(Figure 5). The framework is expected to drastically cut the time
taken by main testing stages which are typically a bottleneck in
the manufacturing project of SAP, by bringing in the automation
and risk-based prioritization and early validation practices
(Table 1).

Table 1: Cycle-Time Compression.

Phase Traditional (Days) DevTestOps (Days)
System Testing 30 12

Regression 20 6

UAT Support 15 6

e System testing: The conventional model of ERP delivery
takes around 30 days to be tested because of the magnitude
of manual tests execution, environment dependencies and
late defects discovery. System testing under the DevTestOps
strategy consumes about 12 days which includes automated
execution of tests, proving test data and service virtualization.

J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

Early defects prior to product development are to be found
by performing shift-left testing that reduces the amount of
rework at this stage and facilitates quicker stabilization of
end-to-end business processes.

e Regression testing: The greatest time-cutting deals with
regression testing, as it goes through an estimated time of
20 days in the classic framework to approximately 6 days
in the DevTestOps. This has been enhanced majorly due to
the risk-based automation of regressions where high impact
test cases are given priority and unnecessary execution of
tests are removed. Dynamic regression pack optimization
provides the optimization of testing efforts on areas that are
most influenced by changes with a large margin of speed up
feedback cycles without losing confidence in the integrity
of systems.

* UAT support: User Acceptance Testing (UAT) support
normally takes up to 15 days with the involvement of
testing teams to deal with defects, data complications and
the instability of the environment. Under the Scheme of
DevTestOps, support effort at UAT is minimized to about 6
days with the systems more mature at entry of UAT, better
quality defects and readiness to test data. The effect of this
is that business users are less distraught by such disruptions
and that the UAT cycles are completed with more efficiency
at lower dependency rate in the context of extended testing
support.

30 -

25 4

20 -
15 -
10 -
5' — —r

System Testing Regression UAT Support
i Traditional (Days) ™ DevTestOps (Days)

Figure 5: Graph representing Cycle-Time Compression.
4.2. Defect leakage reduction

Less leakage of defects is a vital pointer of effectiveness
in the proposed framework of DevTestOps in enhancing the
quality of the ERP system and the stability of operations. In the
traditional models of ERP delivery, many defects are passed
down to production because of late testing, unfavourable system
regression and insufficient verification of configuration and
integration change. Implementing the DevTestOps methodology
has entailed a significant reduction of about 4560% in the number
of defects in the production cycle and this is the actual evidence
of the practical advantages involved in early validation and
risk-driven testing practices. This is mainly due to the shift-left
testing activities that are entrenched in the framework that allows
faults to be detected earlier in the stages of their introduction.
Performing ABAP unit testing and automated configuration
validation early before the faulty custom code and incorrectly
configured system can survive to system and regression testing
ensure that these errors and mistakes do not advance into system
and regression testing stages. The framework reduces the
propagation of defects since problems are resolved sooner and,

Potla RB.,

therefore, it decreases the chances of a complex and difficult
to diagnose issues emerging in the production environment.
Risk-based regression testing also helps reduce defect leakage
since the most business-critical and change-sensitive business
ones are always verified with each release cycle. The regression
process brings more attention to areas that are most likely to
fail by ranking the test cases by their business impact, scope of
change and past defects patterns. This focused validation has an
enormous effect in reducing the efficiency of detecting defects
in comparison to the conventional, cumbersome regression
methods that usually dissipate the testing effort in high-risk
regions. Furthermore, test coordination and service mocking
through CI/CD enhances a range of integration testing and
ensures uniformity through leveraging service virtualization
and set of tests to validate end-to-end processes and exception
handling conditions. Taken together, each of these practices
forms a series of quality gates in the life cycle of delivering
products and this eliminates the use of defect detection at a late
stage. The reduction in escaped defects as observed but not only
improves the reliability of a system but also helps reduce the
cost of post-production support, increases user confidence and
reduces operational disruptions during manufacturing in the
ERP environment.

4.3. Release predictability

The importance of the release predictability is the key
success factor of manufacturing organizations using ERP
systems as the means of facilitating time-sensitive and well-
integrated business functions. Finally In classic ERP delivery
models, the late detection of defects, bad test environment and
poor regression coverage of defects before release is common
and results in late fancy schedule slips and last-minute fixes. In
such a case, the success rates of releases usually fall at about
65, which kills business confidence in IT delivery. The proposed
DevTestOps framework greatly enhanced the predictability of
the release with success release going well above 90 and much
more controlled and reliable delivery procedure. This has much
been due to the fact that structured automation and continuous
validation throughout the delivery lifecycle have been
introduced. CI/CD pipelines enable reliability and repeatability
in the execution of builds, test and quality checks and minimize
variability with manual processes. Quality gates are deployed at
every step of the process to promote only those changes that have
passed pre-established stability and coverage criteria and allow
the minimization of failures or rollbacks occurring at the last
moment. Consequently, release schedules are less unpredictable
and vulnerable to unforeseen inconveniences. Risk-based
regression testing is also important in improving predictability
by fixing the test coverage to business priorities and impact of
change. The framework minimizes the uncertainty of high-risk
manufacturing processes and integrations by making sure that
before everything is release, the scenario is always checked up.
Moreover, better data management of the tests and virtualization
of the service will contribute to the stability of the environment,
thereby eliminating any further delays in the case of data
problems or absence of external systems. Combined, these
practices would create a clear and metrics-focused delivery
model which gives the stakeholders quick and consistent
indicators of release readiness. The subsequent increase in the
rates of successful releases builds more business confidence
in IT, allows planning manufacturing operations more reliably

J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

and promotes the transition to more regular and reliable ERP
releases.

5. Conclusion

As the paper illustrates, in a deliberate implementation,
tailored to the SAP ERP manufacturing landscape, DevTestOps
will change quality control, which predominantly is a
downstream, reactive and reactive measure, to a value-adding
and continuous capability that manifests itself throughout the
delivery lifecycle. Critical ERP testing methodologies that
extensively use late-stage manual testing and lengthy regression
testing are found to be showing increased disparity with the
requirement of speed, stability and predictability in the new
manufacturing business ventures. To overcome these limitations,
the suggested DevTestOps infrastructure proposes to implement
the principles of quality engineering into development,
configuration, integration and deployment in a systematic
manner. The framework allows ensuring a high level of defects
being detected at the early stages of its development and during
the testing of configuration alterations by the practice of shift-
left testing, which minimizes the spread of defects to subsequent
testing. Intelligent test data management also guarantees that
realistic, compliant and business representative data is always
available and this is one of the greatest causes of test failure
and delays in the ERP systems. Service virtualization also
separates testing behaviour and behavioural dependencies on
outward systems, which makes it possible to validate integration
behaviours and exceptions with confidence when operating in
controlled and repeatable conditions. The combination of these
abilities forms a consistent and scalable testing platform that
can be used to provide continuous delivery without affecting the
governance or compliance mandates. The automation of risk-
based regression is a significant development in the regression
testing involving the size and intricacy of ERP. The framework
prioritizes executing the tests by the level of business criticality,
change impact and historical defect trends so as to concentrate its
effort where it is giving the highest risk reduction. As part of CI/
CD pipelines, these practices made it possible to have automated
coordination of tests and objective quality gates to filter out only
stable and promotion-ready changes. Empirical findings that have
been reported in this study such as; a significant compression of
time in the cycle, a significant reduction of the defects that were
not eliminated and a significant improvement in predictability
of releases have been quantitative evidence in the effectiveness
of the framework. In addition to operational efficiency, the
implementation of DevTestOps promotes closer relationships
between the development, testing and operation teams making
quality goals in line with business results. Enhanced release
reliability builds stronger business faith of IT delivery into
the manufacturing organizations so that they can plan their
operations with increased confidence and agility. Finally,
this study validates the claim that a customized DevTestOps
strategy is not just viable in the context SAP ERP manufacturing
systems but it is an indispensable approach to generating quality
sustainably, speedy operations in a competitive manufacturing
ecosystem.

6. References

1. Aloini D, Dulmin R, Mininno V. Risk management in ERP project
introduction: Review of the literature. Information & management,
2007;44: 547-567.

https://www.sciencedirect.com/science/article/abs/pii/S0378720607000547
https://www.sciencedirect.com/science/article/abs/pii/S0378720607000547
https://www.sciencedirect.com/science/article/abs/pii/S0378720607000547

Potla RB.,

10.

11.

Bradford M, Florin J. Examining the role of innovation diffusion
factors on the implementation success of enterprise resource planning
systems. International journal of accounting information systems,
2003;4: 205-225.

Doom C, Milis K, Poelmans S, et al. Critical success factors for ERP
implementations in Belgian SMEs. Journal of Enterprise Information
Management, 2010;23: 378-406.

Kim Y, Chen YS, Linderman K. Supply network disruption and
resilience: A network structural perspective. Journal of operations
Management, 2015;33: 43-59.

Lwakatare LE, Kuvaja P, Oivo M. Relationship of Devops to agile,
lean and continuous deployment: A multivocal literature review study.
In International conference on product-focused software process
improvement. Cham: Springer International Publishing 2016: 399-415.

Sarker S, Lee AS. Using a case study to test the role of three key
social enablers in ERP implementation. Information & Management,
2003;40: 813-829.

Staats BR, Upton DM. Lean principles, learning and software
production: Evidence from Indian software services. Harvard Business
School Technology & Operations Mgt. Unit Working Paper, 209.

Yoo Y, Henfridsson O, Lyytinen K. Research commentary-the new
organizing logic of digital innovation: an agenda for information
systems research. Information systems research, 2010;21: 724-735.

Ioannou G, Papadoyiannis C. Theory of constraints-based
methodology for effective ERP implementations. International Journal
of Production Research, 2004;42: 4927-4954.

Rajagopal P. An innovation-diffusion view of implementation of
enterprise resource planning (ERP) systems and development of a
research model. Information & Management, 2002;40: 87-114.

Radanliev P, De Roure DC, Nicolescu R, et al. Future developments in
cyber risk assessment for the internet of things. Computers in industry,
2018;102: 14-22.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J Artif Intell Mach Learn & Data Sci | Vol: 4 & Iss: 1

Lee JD, Seppelt BD. Human factors and ergonomics in automation
design. Handbook of human factors and ergonomics, 2012: 1615-
1642.

Ndoulou AO. The role of enterprise resource planning in entrenching
business processes in a selected organisation in the Western Cape,
South Africa (Doctoral dissertation, Cape Peninsula University of
Technology), 2019.

Ganesh K, Mohapatra S, Anbuudayasankar SP, et al. Enterprise
resource planning: fundamentals of design and implementation.
Springer, 2014.

Garg VK, Venkitakrishnan NK. Enterprise Resource Planning:
concepts and practice. PHI Learning Pvt. Ltd, 2003.

Denton P. Business strategy driven IT systems for engineer-to-order
and make-to-order manufacturing enterprises (Doctoral dissertation,
Loughborough University), 2009.

Felstaine E, Hermoni O. Machine Learning, Containers, Cloud
Natives and Microservices. In Artificial Intelligence for Autonomous
Networks. Chapman and Hall/CRC, 2018: 145-164.

Felderer M, Ramler R. A multiple case study on risk-based testing
in industry. International Journal on Software Tools for Technology
Transfer, 2014;16: 609-625.

Lwakatare LE. DevOps adoption and implementation in software
development practice: concept, practices, benefits and challenges,
2017.

Amer Hamzah AF. The Development of Transport Request System in
SAP using ABAP Language, 2006.

Nguyen DM, Huynh QT, Ha NH, et al. Automated test input generation
via model inference based on user story and acceptance criteria for
mobile application development. International Journal of Software
Engineering and Knowledge Engineering, 2020;30: 399-425.

https://www.sciencedirect.com/science/article/abs/pii/S1467089503000265
https://www.sciencedirect.com/science/article/abs/pii/S1467089503000265
https://www.sciencedirect.com/science/article/abs/pii/S1467089503000265
https://www.sciencedirect.com/science/article/abs/pii/S1467089503000265
https://www.scirp.org/reference/referencespapers?referenceid=1001304
https://www.scirp.org/reference/referencespapers?referenceid=1001304
https://www.scirp.org/reference/referencespapers?referenceid=1001304
https://www.sciencedirect.com/science/article/abs/pii/S0272696314000746
https://www.sciencedirect.com/science/article/abs/pii/S0272696314000746
https://www.sciencedirect.com/science/article/abs/pii/S0272696314000746
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pdfs.semanticscholar.org/cb4d/daba6676f0a281e263cfe09493a0bf4171d2.pdf
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pdfs.semanticscholar.org/cb4d/daba6676f0a281e263cfe09493a0bf4171d2.pdf
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pdfs.semanticscholar.org/cb4d/daba6676f0a281e263cfe09493a0bf4171d2.pdf
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pdfs.semanticscholar.org/cb4d/daba6676f0a281e263cfe09493a0bf4171d2.pdf
https://dl.acm.org/doi/abs/10.1016/S0378-7206(02)00103-9
https://dl.acm.org/doi/abs/10.1016/S0378-7206(02)00103-9
https://dl.acm.org/doi/abs/10.1016/S0378-7206(02)00103-9
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1370409
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1370409
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1370409
https://www.jstor.org/stable/23015640
https://www.jstor.org/stable/23015640
https://www.jstor.org/stable/23015640
https://dl.acm.org/doi/abs/10.1007/978-3-030-02131-3_47
https://dl.acm.org/doi/abs/10.1007/978-3-030-02131-3_47
https://dl.acm.org/doi/abs/10.1007/978-3-030-02131-3_47
https://www.sciencedirect.com/science/article/abs/pii/S0378720601001355
https://www.sciencedirect.com/science/article/abs/pii/S0378720601001355
https://www.sciencedirect.com/science/article/abs/pii/S0378720601001355
https://www.sciencedirect.com/science/article/pii/S0166361518301817
https://www.sciencedirect.com/science/article/pii/S0166361518301817
https://www.sciencedirect.com/science/article/pii/S0166361518301817
https://stacks.cdc.gov/view/cdc/226422
https://stacks.cdc.gov/view/cdc/226422
https://stacks.cdc.gov/view/cdc/226422
https://etd.cput.ac.za/handle/20.500.11838/2822
https://etd.cput.ac.za/handle/20.500.11838/2822
https://etd.cput.ac.za/handle/20.500.11838/2822
https://etd.cput.ac.za/handle/20.500.11838/2822
https://www.amazon.in/Enterprise-Resource-Planning-Management-Professionals/dp/3319059262
https://www.amazon.in/Enterprise-Resource-Planning-Management-Professionals/dp/3319059262
https://www.amazon.in/Enterprise-Resource-Planning-Management-Professionals/dp/3319059262
https://www.phindia.com/Books/BookDetail/9788120322547/ENTERPRISE-RESOURCE-PLANNING-CONCEPTS-AND-PRACTICE-GARG-VENKITAKRISHNAN?srsltid=AfmBOordjAsSugv2cASuoZUWlzsR-3nMJPqsOJ0l1uHPrLh9vSafyoQe
https://www.phindia.com/Books/BookDetail/9788120322547/ENTERPRISE-RESOURCE-PLANNING-CONCEPTS-AND-PRACTICE-GARG-VENKITAKRISHNAN?srsltid=AfmBOordjAsSugv2cASuoZUWlzsR-3nMJPqsOJ0l1uHPrLh9vSafyoQe
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351130165-7/machine-learning-containers-cloud-natives-microservices-eyal-felstaine-ofer-hermoni
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351130165-7/machine-learning-containers-cloud-natives-microservices-eyal-felstaine-ofer-hermoni
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351130165-7/machine-learning-containers-cloud-natives-microservices-eyal-felstaine-ofer-hermoni
https://dl.acm.org/doi/abs/10.1007/s10009-014-0328-z
https://dl.acm.org/doi/abs/10.1007/s10009-014-0328-z
https://dl.acm.org/doi/abs/10.1007/s10009-014-0328-z
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/oulurepo.oulu.fi/bitstream/handle/10024/34349/isbn978-952-62-1711-6.pdf?sequence=1
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/oulurepo.oulu.fi/bitstream/handle/10024/34349/isbn978-952-62-1711-6.pdf?sequence=1
file:///F:/URF/JAIMDS/JAIMLD%23655/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/oulurepo.oulu.fi/bitstream/handle/10024/34349/isbn978-952-62-1711-6.pdf?sequence=1
https://www.academia.edu/115866886/The_Development_of_Transport_Request_Systemin_SAP_using_ABAP_Language
https://www.academia.edu/115866886/The_Development_of_Transport_Request_Systemin_SAP_using_ABAP_Language

