The New Approach to Warranty and Service Contracts
Hello Text
The model base parameters are
=1/65;
=0.1;
=1/5;
=1/5; p1=0.5; p2=0.5; b=0.05;
u1=0;u2=0;u3=0;
Bifurcation analysis
The MATLAB software MATCONT is used to perform the
bifurcation calculations. Bifurcation analysis deals with multiple
steady-states and limit cycles. Multiple
steady states occur because of the existence of branch and limit points. Hopf bifurcation points cause limit cycles. A commonly used MATLAB program that locates
limit points, branch points and Hopf bifurcation points is MATCONT11,12. This
program detects Limit points (LP), branch points (BP) and Hopf bifurcation
points(H) for an ODE system
References
1.
Sengupta P. Potential health impacts of hard water. Int J Prev Med
2013;4:866-875.
2.
Pizzorno J. The kidney dysfunction epidemic, part 1: causes. Integr
Med 2015;14(6):8-13.
3.
Pizzorno J. The kidney dysfunction epidemic, part 2: intervention.
Integr Med 2016;15(1):8-12.
4.
Abraham
G, Varughese S, Thandavan T, et al. chronic kidney disease hotspots in
developing countries in South Asia. Clin Kidney J 2016;9(1):135-141.
5.
Carraro L, Mari L, Hartikainen H, et al. An epidemiological model
for proliferative kidney disease in salmonid populations. Parasit Vectors
2016;9(1):487.
6.
Wasana
HMS, Perera GDRK, Gunawardena PDS, Fernando PS, Bandara J. WHO water quality
standards Vs synergic effect(s) of fluoride, heavy metals and hardness in
drinking water on kidney tissues. Sci Rep 2017;7:42516.
7.
Tambaru D, Djahi BS, Ndii MZ. The effects of hard water consumption
on kidney function: insights from mathematical modelling. In: AIP conference
proceedings 2018;1937:020020.
8.
Almarashi A, Alghamdi M, Mechai I. A new mathematical model for
diagnosing chronic diseases (kidney failure) using ann. Cogent Math Stat
2018;5(1):1559457.
9.
Walk JC,
Ayati BP, Holstein SA. Modelling the effects of multiple myeloma on kidney
function. Sci Rep 2019;9(1):1726.
10.
Ndii MZ, Berkanis FR, Tambaru D, et al. Optimal control strategy
for the effects of hard water consumption on kidney-related diseases. BMC Res
Notes 2020;13(1):201.
11.
Dhooge
A, Govearts W, Kuznetsov AY. MATCONT: A Matlab package for numerical
bifurcation analysis of ODEs. ACM transactions on Mathematical software
2003;29(2):141-164.
12.
Dhooge
A, Govaerts W, Kuznetsov YA, Mestrom W, Riet AM. CL_MATCONT; A continuation toolbox in Matlab
2004.
13.
Kuznetsov YA. Elements of applied bifurcation theory. Springer, NY 1998.
14.
Kuznetsov YA. Five lectures on numerical bifurcation analysis. Utrecht University, NL 2009.
15.
Govaerts wJF. Numerical Methods for Bifurcations of
Dynamical Equilibria. SIAM
2000.
16.
Flores-Tlacuahuac A,
Morales P, Toledo MR. Multiobjective Nonlinear model predictive control of a class of chemical reactors. I & EC research 2012:5891-5899.
17.
William
EH, Laird CD, Watson JP, et al. Pyomo - Optimization Modeling in Python Second
Edition 67.
18.
Wächter A, Biegler L. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming. Math. Program 2006;106:25-57.
19.
Tawarmalani M, Sahinidis NV. A polyhedral
branch-and-cut approach to global optimization. Mathematical Programming 2005;103(2):225-249.
20.
Upreti SR. Optimal control for chemical engineers. Taylor and
Francis 2013.