Full Text

The New Approach to Warranty and Service Contracts


Hello Text

The model base parameters are

  =1/65;   =0.1;   =1/5;   =1/5;  p1=0.5; p2=0.5;  b=0.05;  u1=0;u2=0;u3=0;


Bifurcation analysis

The MATLAB software MATCONT is used to perform the bifurcation calculations. Bifurcation analysis deals with multiple steady-states and limit cycles.  Multiple steady states occur because of the existence of branch and limit points.  Hopf bifurcation points cause limit cycles.  A commonly used MATLAB program that locates limit points, branch points and Hopf bifurcation points is MATCONT11,12.  This program detects Limit points (LP), branch points (BP) and Hopf bifurcation points(H) for an ODE system

References

1.      Sengupta P. Potential health impacts of hard water. Int J Prev Med 2013;4:866-875.

2.      Pizzorno J. The kidney dysfunction epidemic, part 1: causes. Integr Med 2015;14(6):8-13.

3.      Pizzorno J. The kidney dysfunction epidemic, part 2: intervention. Integr Med 2016;15(1):8-12.

4.      Abraham G, Varughese S, Thandavan T, et al. chronic kidney disease hotspots in developing countries in South Asia. Clin Kidney J 2016;9(1):135-141.

5.      Carraro L, Mari L, Hartikainen H, et al. An epidemiological model for proliferative kidney disease in salmonid populations. Parasit Vectors 2016;9(1):487.

6.      Wasana HMS, Perera GDRK, Gunawardena PDS, Fernando PS, Bandara J. WHO water quality standards Vs synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues. Sci Rep 2017;7:42516.

7.      Tambaru D, Djahi BS, Ndii MZ. The effects of hard water consumption on kidney function: insights from mathematical modelling. In: AIP conference proceedings 2018;1937:020020.

8.      Almarashi A, Alghamdi M, Mechai I. A new mathematical model for diagnosing chronic diseases (kidney failure) using ann. Cogent Math Stat 2018;5(1):1559457.

9.      Walk JC, Ayati BP, Holstein SA. Modelling the effects of multiple myeloma on kidney function. Sci Rep 2019;9(1):1726.

10.   Ndii MZ, Berkanis FR, Tambaru D, et al. Optimal control strategy for the effects of hard water consumption on kidney-related diseases. BMC Res Notes 2020;13(1):201.

11.   Dhooge A, Govearts W, Kuznetsov AY. MATCONT: A Matlab package for numerical bifurcation analysis of ODEs.   ACM transactions on Mathematical software 2003;29(2):141-164.

12.   Dhooge A, Govaerts W, Kuznetsov YA, Mestrom W, Riet AM. CL_MATCONT; A continuation toolbox in Matlab 2004.

13.   Kuznetsov YA. Elements of applied bifurcation theory. Springer, NY 1998.

14.   Kuznetsov YA. Five lectures on numerical bifurcation analysis. Utrecht University, NL 2009.

15.   Govaerts wJF. Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM 2000.

16.   Flores-Tlacuahuac A, Morales P, Toledo MR. Multiobjective Nonlinear model predictive control of  a class of chemical reactors. I & EC research 2012:5891-5899.

17.   William EH, Laird CD, Watson JP, et al. Pyomo - Optimization Modeling in Python Second Edition 67.

18.   Wächter A, Biegler L. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program 2006;106:25-57.

19.   Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Mathematical Programming 2005;103(2):225-249.

20.   Upreti SR. Optimal control for chemical engineers. Taylor and Francis 2013.